木毛セメント板メーカーが作った乾式遮音二重床

〈特許出願済＞

ジャストフロアーは，
集合住宅に住むしつけ前の幼児が伸び伸びと育ち，
分別ある大人が普通に暮らせる遮音性能を持つ床を目指します。

安 全

徤 康
快 適 高耐久
エ コ

こ丁ムラ

竹村工業株式会社

より良い床作りを追求する，

ジャスト（Just）とは， Justice［正しい－本当•正碓の形容詞です。

正しいもの作りは，まず現場から。

ジャストフロアーは，
乾式遮音二重床に求められている
遮音性能の測定を，
実験室だけではなく，
施工現場（実建物）でも行います。

INDEX

－ジャストフロアーのコンセプト・•••••1－2
－ジャストフロアーの概要 －3－4

- 木毛セメント板とは ……．．．．．．．．5－12
- ジャストフロアーの生産体制 …13－14
－ジャストフロアーの研究開発•検査体制 •15－16

- 音について \cdot ．．．．．．．．．．．．．．．．．．．．．．．18－22
- 商品の説明 \cdot ．．．．．．．．．．．．．．．．．．．．23－33
- 構成部材 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 34
- 床高別適用支持脚 ………35－36
- 基本レイアウト図………．．．．37－38
- 標準施工手順 …．．．．．．．．．．．．．．．39－41
－JFシステムとは ．．．．．．．．．．．．．．．．．．．．．．．． 42

INDEX	
－ジャストフロアーのコンセプト ．．．．．．1－2	
－ジャストフロアーの概要 …．．．．．．．3－4	
－木毛セメント板とは ．．．．．．．．．．．．．5－12	
－ジャストフロアーの生産体制 ${ }^{\text {－}}$－13－14	
－ジャストフロアーの研究開発•検査体制 \cdot •15－16	
－床先行工法について ．．．．．．．．．．．． 17	
－音について ．．．．．．．．．．．．．．． 18 －22	
－商品の説明 \cdot ．．．．．．．．．．．．．．．．．23－33	
－構成部材 ．．．．．．．．．．．．．．．．．．．． 3 34	
－床高別適用支持脚 $\cdot \cdots \cdots \cdots \cdots$ ． $35-36$	
－基本レイアウト図 ．．．．．．．．．．． 3 37－38	
－標準施工手順 \cdot ．．．．．．．．．．．．．．39－41	
－JFシステムとは ．．．．．．．．．．．．．．． 42	

—人の安全••建康と，環境対策の両立—

■建築廃材からの脱却
従来の主な乾式二重床に使用されている，建築廃材のチップを原料とするパーティクルボードは，CCA処理材混入のリスク を抱えており，健康，安全が求められる住空間にはなじまないと考えております。
ジャストフロア一は，
－国産ヒノキの間伐材とセメントと水で作った強化高圧木毛セメント板（スラボー）
を使用した安全な床パネルを提案します。
■間伐材の利用が温暖化対策に
間伐をすれば，局所的には森の体積は減少しますが，森が健全に成長することで最終的には CO_{2} の蓄積量が増えることが わかっています。
さらに，京都議定書の第1約束期間における温暖化ガス6\％削減目標の内，「上限3．8\％を森林吸収源に算入できる」と議定書締約国間で合意されています。これを実現させるためにも，森林整備にともなう間伐材の利用が重要となります。

—地元の木が，燃えない建材として里帰り—

■間伐材が生まれ変わり，帰ってくる

木（間伐材）の使用を考えた場合，「燃える」「「腐る」「「徽びる」｢「シロアリに食べられる」等の問題点があり，多くは化学薬品 を使用して対処しています。木毛セメント板は，木とセメントと水のみの原料で，化学薬品を一切使用しないでこれらの問題点 を解決する性能を持ちます。
木毛セメント板は，間伐材の生産地にその製品を納入することも可能です。地元の山から切り出した間伐材が多機能•高性能建材に生まれ変わって里帰り，また地域の生活の一部となります。

平成6年	平成9年	平成10年	平成11年	平成15年	平成17年	平成20年	平成24年
\square	\square	$\square \square$	\square	\square	\square	\square	\square
－タ	山	木 T	強	100	100	乾	木 内
長ケ	口	造 S	化	年	于年	式	風毛 $\mathrm{V}^{\text {装 }}$
野厽	工	軸	高	市	チ市	遮	㐫セし衣
県亏	場	組 否	厘	場	亏場	音	産め白細
初建	操	耐	木	住	ル住	景	¢ ツウ䊾
の材	業	力 型	ス毛	宅		重	キト成繊
本総	開	壁 枠	今セ	実	怣	床	の板気維
格合		訒 制	ボメ	験	白	，	間の製製化
的研		認 製	1	糐	易		伐製造化
残究		䞠 䢰	製卜	建	고	製た	材造販杜
響所			造板	設		造	$100 \text { に夡权 }$
室建			開		事官	販	
そ 設			始				使

－スラボーの性能

エ コ
－原材料の木材は，国産ヒノキの間伐材を100\％利用して います。（P5）

材料の木材は，建築廃材ではなくバージン材の丸太です。
－火に強く，炎や有毒ガスを発生しません。（P6）

健 康
－厚生労働省が定めた化学物質13品目の内アセトアルデヒドを除く
12品目の室内濃度指針値を大幅（定量下限値以下）にクリア。（P8）

高耐久

防腐性能，防蟻性能（P6）
－防力ビ性能 $>$ 耐水性能（P7）
－コンクリートは長期間湿気を放出します。密閉された床下では， スラボーの調湿性と防力ビ性が効果を発揮します。（P7）

CCA処理木材について

■建築廃材を使用するリスク
従来の乾式二重床に使用されている，建築廃材のチップを原料とするパーティクルボードは，CCA処理木材混入のリスクを抱えています。

■CCA処理木材とは
CCA処理木材とは，木材の防腐•防蟻を目的としてCCA（クロム・銅・ヒ素化合物木材防腐剤）を木材内部に加圧注入処理した物で，日本では1960年代後期から電柱や土台等の建築用材として使用されてきました。
現在は，その毒性と排水基準の強化などで国内ではほとんど生産されていませんが，今まさに，建築物の解体 に伴いこれまで使用されていたCCA処理木材が大量に排出されることが予想されます。
また，CCA処理木材は，建設リサイクル法基本方針に於いて，
「防腐•防蟻のため木材にCCA（クロム，銅及びヒ素化合物系木材防腐剤をいう。以下同じ。）を注入した部分 （以下「CCA処理木材」という。）については，不適正な焼却を行った場合にヒ素を含む有毒ガスが発生するほ か，焼却灰に有害物である六価クロム及びヒ素が含まれることとなる。このため，CCA処理木材については，そ れ以外の部分と分離•分別し，それが困難な場合には，CCAが注入されている可能性がある部分を含めてこ れをすべてCCA処理木材として焼却又は埋立を適正に行う必要がある。」 と，されています。

分離•分別の現状
分別解体や現場分別については，意識の低さから取り組みが十分 ではなく，CCA処理木材の現場分別が徹底されていない場合があ ります。（建設リサイクル推進に係る方策 平成20年3月）
また，CCA処理木材の判定方法の難しさとコスト高も現場分別が徹底されない大きな要因になっています。

■ ジャストフロアーの性能

データ参照（P23～P33）

適度なクッションと高い剛性がバランスの良い歩行感を作ります。
－脚部のスラブ設置点（縱横455mmピッチ）の全数調整により，精度の高い床面ができ上がります。

縦横455mmピッチの脚部と長手方向のジョイント部に通す長尺受け材により，より均一でたわみの少ない床面になります。
－剛性が高く，均一な床面ですので補強脚が必要なく，間取り変更時 でも床下地がそのまま利用できます。

木毛セメント板とは

原麻料

｜木毛セメント板の材料は，木とセメントと水のみ
使用されている木質材料は，全て国産ヒノキの間伐材です。防蟻剤，防腐剤の混入の可能性がある建築廃村は全く使用していません。
また，結合剤はセメントであり，接着剤等を使用しておらず，揮発性有機化合物（VOC）に対する安全性に繋がっていま す。

※広域再生利用指定産業廃棄物処理者指定 （指定番号 第66号）
当社は平成16年11月に広域再生利用指定産業廃棄物処理者指定を取得し，自社製品が建築現場で廃材となったもののみをリサイクル材として利用 しています。

実本績目

｜高圧木毛セメント板TSボ一ドは，主に屋根下地材として使用されています。

\｜強化高圧木毛セメント板スラボーは，より強度を必要とする打込型枠材等に使用されています。

耐炏性能

｜火に強い強化高圧木毛セメント板スラボー

スラボーには耐火性があり，炎や有毒ガスを発生しません。
－スラボ一燃焼実験

｜特別な薬剤処理をしなくても耐朽，耐蟻性があります。
－耐朽性試験結果（京都大学木質科学研究所）

オオウズラタケ（褐色腐朽菌）				
試 料	質量減少率（\％）			
	最小	最大	平均	標準偏差
スラボー	0	0	0	0
ブナ辺材	21.8	32． 3	26． 7	3． 4

カワラタケ（白色腐朽菌）				
試 料	質量減少率（\％）			
	最小	～最大	平均	標準偏差
スラボー	0	0	0	0
ブナ辺材	32． 4	46． 0	37． 0	5． 0

－耐蟻性試験結果（京都大学木質科学研究所）

イエシロアリ	質量減少率（\％）			死虫率（\％）		
試 料						
	最小～最大 平均			最小～最大 平均		
スラボー	0	0	0	21	24	23
スギ辺材	22	25	23	2	3	3

anas＊				
＊	meswenos		nota	
	＊－20＊	＊＊	＊＊＊＊	＊
＊＊	H．	＊	＊－a	＊
＊＊＊	＊－	＊	\ldots	，
＊．＊＊sitave				

木毛セメント板とは

防力ビ性能

\｜木毛セメント板には，防カビ性能があります。

アルカリ性である木毛セメント板は，カビが発生しにくい材料です。
当社が木毛セメント板を製造開始して以来，カビが発生したという事例はありません。
－防カビ性能試験
強化高圧木毛セメント板 スラボーを打込型枠材に使用した弊社実験棟（鉄筋コンクリート造，平成16年完成）の， 1 階床下点検口内を水で満たし（水深約 400 mm ），数年間放置後，内部のスラボーの様子を検証した。

水表面に浮かぶホコリやゴミなどにカビが発生していたが，スラボーは表面に水滴が付着している程度で， カビや腐りは認められず，水分（湿度）による軟化等の変形も見られない。

｜耐水性能

強化高圧木毛セメント板スラボーは，水分に強い性質があります。

吸水厚さ膨張率は，パーティクルボードの1／2～1／3で，乾燥すると元に戻ります。
また，曲げ強度には，24H浸水時では 25% 低下しますが，乾燥後は元の強度に戻り
ます。

調湿㭫能

強化高圧木毛セメント板スラボーは，吸放湿性能を有しています。

－調湿性能試験結果。
JIS A 1470－1湿度応答法による吸放湿性能試験
試験体：強化高圧木毛セメント板 スラボー（ $300 \mathrm{~mm} \times 300 \mathrm{~mm} \times 25 \mathrm{~mm}$ 厚）試験条件：湿度 $53 \%-75 \%$（中湿域）温度 $23^{\circ} \mathrm{C}$ 4サイクル

試験結果	周期定常吸湿量	$48.9 \mathrm{~g} / \mathrm{m}^{2}$
	周期定常放湿量	$51.1 \mathrm{~g} / \mathrm{m}^{2}$
	周期定常放湿量差	$2.2 \mathrm{~g} / \mathrm{m}^{2}$

安全•健尿

｜木とセメントと水のみでできた，安全な建材です。

原材料が木とセメントと水のみのため，ホルムアルデヒド規制対象外の建材です。
また，防蟻剤，防腐剤の混入の可能性がある建築廃材や，接着剤等は全く使用していません。
－スラボー内に於ける，厚生労働省が室内空気環境の指針値を定める化学物質6品目の検査結果。
スラボーの箱内で拡散法によるサンプリングを行い，ガスクロマトグラフ質量分析計で分析を行った。

検 査 項 目	基 準 値	含 有 量
ホルムアルデヒド	0．08ppm以下	$<0.001 \mathrm{ppm}$
トルエン	0．07ppm以下	$<0.001 \mathrm{ppm}$
p－ジクロロベンゼン	0．04ppm以下	$<0.001 \mathrm{ppm}$
キシレン	0．20ppm以下	$<0.001 \mathrm{ppm}$
エチルベンゼン	0．88ppm以下	$<0.001 \mathrm{ppm}$
スチレン	0．05ppm以下	$<0.001 \mathrm{ppm}$

－スラボー＋グラスウール内に於ける，厚生労働省が室内空気環境の指針値を定める化学物質13品目の検査結 スラボー＋グラスウールの箱内で活性炭吸着，固相吸着，ろ過捕集によるサンプ リングを行い，ガスクロマトグラフ質量分析計で分析を行った。

検査項目	基 準 値	含 有 量	検査項目	基 準 値	含 有 量
$\begin{gathered} \mathrm{p}- \\ \text { ジクロロベンゼン } \end{gathered}$	0．04ppm以下	＜0．004ppm	ダイアジノン	0．02ppb以下	＜0．002ppb
トルエン	0．07ppm以下	＜0．001ppm	フェノブカルブ	3．8ppb以下	＜0．38ppb
キシレン	0．20ppm以下	＜0．02ppm	$\begin{array}{\|l\|} \hline \text { フタル酸ジー2- } \\ \text { エチルヘキシル } \\ \hline \end{array}$	7．6ppb以下	＜0．76ppb
エチルベンゼン	0．88ppm以下	＜0．088ppm	$\begin{aligned} & \text { フタル酸ジーn- } \\ & \text { ブチル } \end{aligned}$	0．02ppm以下	＜0．002ppm
スチレン	0．05ppm以下	＜0．005ppm	ホルムアルデヒド	0．08ppm以下	0．033ppm
テトラデカン	0．04ppm以下	＜0．004ppm	アセトアルデヒド	0．03ppm以下	0.18 ppm
クロルピリフォス	0．07ppb以下	＜0．007ppb			

※ アセトアルデヒドの指針値見直しの動きについて。
世界保健機構（WHO）の空気環境ガイドラインで定められていたアセトアルデヒドの許容濃度に誤りがあったことが判明（2003年11月）した事を受け，厚生労働省も指針値の再検討に着手しています。（2004年4月国交省は，住宅性能表示制度から除外）
※ 試験方法ついて。
箱の中の空気環境を測定する方法は当社オリジナルの試験方法ですが，三畳の部屋の全面（床，壁，天井）にスラボーを使用した場合と比較して 2 倍厳しい環境での試験です。

木毛セメント板とは

スラボーによる，高性能コンクリート

\｜打込型枠として使用した場合，ブリージング水の上がりを防止し，強度が大幅にアップします。

スラボーが余分な水を打設時に吸収する（脱水型枠）ため，ブリージング水が上がりません。それにより，コンクリート の強度性能が向上します。また，スラボーが保水するので，コンクリート表面（スラボーに接する面）は濡れむしろ効果があり，クラックが入りにくくなります。
スラボー付きの基礎，壁，スラブ等は，強度が大幅にアップします。

－ブリージング試験

各型枠（壁部）によるブリージング水の測定							（単位：ml）	
	20分後	40分後	70分後	100分後	130分後	180分後	200分後	合計
スラボー	4	0	0	0	0	0	0	4
コンパネ	6	7	3	2	0	0	0	18
$\begin{gathered} \text { コンパネ } \\ \text { (ウレタン塗装) } \end{gathered}$	9	9	10	8	9	3	0	48
鋼製型枠	29	25	13	8	10	4	0	89

試験環境：屋外屋根下 コンクリート：スランプ18

\｜木とコンクリートだけで次世代省エネ基準をクリア。

木と型枠材のスラボーが持つ断熱性とコンクリートの蓄熱性を組み合わすことで，特別な断熱材を使用しなくても次世代省エネ基準に適合した構造になります。
この実証実験として，約八畳の広さでコンパネ型枠（内断熱と外断熱）で2棟，スラボー型枠（構造のみと内外杉板）で2棟のコンクリートの部屋を日照等同条件となるように作り比較試験を行い，室内温度とエアコン使用時の消費電力のデータから，III～IV地域ではス ラボーと木を用いることで次世代省エネ基準をクリアするという結果が得られました。

－断熱性能試験 消費電力•温度測定結果（夏）
住宅性能表示等級3（新省エネルギー基準）対応試験

試験条件					室内温度			コンクリート内部温度			
	型枠材	断熱方法	断熱材	熱貫流率	$\begin{aligned} & \text { 平 均 } \\ & \text { 温 度 } \end{aligned}$	期 間 内消費電力	比 率	$\begin{aligned} & \text { 最 高 } \\ & \text { 温 度 } \end{aligned}$	$\begin{array}{ll} \hline \text { 最 低 } \\ \text { 温 度 } \\ \hline \end{array}$	温度差	平均温度
A 棟	コンパネ	内断熱	34． 0 mm	0． 7418	26． 82	$\begin{aligned} & \text { 45. } 81 \\ & (\mathrm{kWh}) \\ & \hline \end{aligned}$	0.95	40． 90	25． 40	15． 50	33． 41
B 棟	スラボー	外壁面板張り	－	1． 1666	26． 97	42． 64	0． 88	32． 10	25． 00	7． 10	28.76
C 棟	コンパネ	外断熱	28． 5 mm	0． 8526	26． 82	48． 39	1． 00	30． 80	25． 30	5． 50	28． 03
D 棟	スラボー	両 面板張り	－	0． 9717	26． 87	42． 72	0． 88	34． 20	24． 10	10． 10	29． 33
$\begin{aligned} & \text { ※断熱材は, カネライトフォームを使用 } \\ & \text { ※室内泠暖房は, } 27{ }^{\circ} \mathrm{C} \text { 冷房運転 } \\ & \text { ※測定点は, 室内温度: グローブ内部, コンクリート温度 : 南壁中心深度部分 } \end{aligned}$								備考 期間：2002／7／25～8／7			

参考値

木毛セメント板とは

ジャストフロアーの原点「ナトゥーア」

－ナチュラルマンション ナトゥーアの概要

「100年住めるだけの家ではなく100年市場価値のある家を」をコンセプトに木装化された超鉄筋コンクリート構造ならではの優れた防災•耐久性能と遮音性，シックハウス対策の自然素材総仕上げの内装や全室床暖房装備を始めとする快適な住空間，リフォーム性の良さなどを持つ，従来の発想では実現できないハイグレードな構造と設備を備えた住宅です。

より安全
，優れた防災•耐久性能

- 耐震設計強度は，100年後の建築基準を見すえて現行の建築基準法の1．5倍。
- 型枠材スラボーによる，高品質で，高強度のコンクリート。
- 使用コンクリート強度は，100年対応の33N／mm2。
- 耐火性に優れ，有毒ガスが発生しない安全な構造。

「地震•火災にも安心！！」スラボーとは？
木と水とセメントだけで出来た強化高圧木毛セメント板の製品名で，コンクリートの打込型枠として使用されています。打設後はそのまま構造の一部となり，コンクリートの中性化を遅らせ，遮音性•調湿性などの性能も持っています。

より健康

908シックハウス対策

- 内装仕上げ材は，全てシックハウス対応の無垢板•珪藻土•御影石。
- スラボーの吸放湿性能で結露が起きにくく，ダ二，カビの発生を抑制。

より快適

- ••・ハグレードの住空間
- 全ての部屋は，圧迫感がなく快適な $2,670 \mathrm{~mm}$ の天井高。
- 居室から風呂・トイレ・廊下・クローゼットまでの，オール温水式床暖房。
- アパートグレードではなく，持ち家グレードの台所，風呂，トイレ。
- ］高遮音性能
- 生活音がほとんど気にならない，上下階の高い遮音性能。
- 二重構造の壁により，隣室との遮音性を確保。

（安全な高断熱性能
－コンクリートの蓄熱性を利用した，木とスラボーによるふりわけ断熱。 －火災時に有毒ガスを発生する断熱材を使用しない，安全な断熱。

人に，環䚈ややをしい。ナトゥーアのリフォーム
ローコスト ・リフォーム例
下地にスラボーを使用しているので，壁や天井をリフォームする時は仕上げ材だけ張りかえればOK ！従来のように下地材から造り直した りしないので，コストを抑えられます。リフォーム中でも他の部屋で生活できるので，工事をしている間に住む住居を用意する必要がなく住居費や引越し資金など工費以外の費用も節約できます。

エコロジー

建物を長期利用する事で建て替えの回数が減り，建設廃材などの廃棄物が約 30% 削減できます。リフォーム時に出る廃材などの廃棄物も仕上げ材だけ張りかえられるナトゥーアなら最小限に抑える事ができ ます。仕上げ材に使用している木は防腐•防蟻処理をしていない為，安全に地場の森林に戻せます。

ナトウーアの高遮普性能

｜上下階の遮音性能

ナトゥーアは，スラボーへの直仕上げであるため，石膏ボードと壁面の隙間，吊り天井とスラブ面の隙間などで発生する太鼓現象（共振による音の増幅） がおきません。

また，スラボーによるオリジナルの床暖パネルが準浮床構造になり，高い遮音性能を持つ構造です。
－1階～2階間の空間遮音性能（D値）

測定値が示すD50～D55の遮音性能とは， $75 \mathrm{~dB} ~ 80 \mathrm{~dB}$ 迄の音（この音量でテレビや音楽を聴くとほとんどの人は不快でうるさく感じま す。）がほとんど聞こえなくなる性能です。赤ち やんの大きな泣き声も，掃除機の音もほとん ど聞こえません。また，外部配管のため，排水 の音も聞こえません。
－床衝撃音レベル（L値）

重量床衝撃音（子供が飛び跳ねた時など）は下の階で聞こえ ますが，遠くの方で飛び跳ねているような聞こえ方をします。
軽量床衝撃音（人が普通に歩いたりスプーンなどを落とした時など）はほとんど聞こえません。

ジャストフロアーの生産体制

製造工場 ジャストフロアーの製品製造工程。

竹村工業株式会社•鶴部工場

制造－場 スラボー（強化高圧木毛セメント板）の製造工場。

ジャストフロアーの研究開発•検査体制

施 設
 あらゆる角度からの分析により，製品の品質維持•向上を支える試験施設。

建材総合研究所

音，強度，耐火性能などを調べる中核の研究施設で，160m³．110m³の残響室が設置され ています。

100年市場住宅実験棟

100年間市場価値が存在する住宅というテーマで，新しい商品や工法を実証•実験する為の施設です。

\square 規模

■地階床面積	$65.84 \mathrm{~m}^{2}$
■1階床面積	$233.52 \mathrm{~m}^{2}$
■2階床面積	$198.87 \mathrm{~m}^{2}$
■バルレニ二一床面積	$102.00 \mathrm{~m}^{2}$
■延床面積	$498.23 \mathrm{~m}^{2}$
■建築面積	$267.54 \mathrm{~m}^{2}$

箱型実験室

遮音性能を調べる為の壁式構造実験室です。

設
 備

ジャストフロアーの性能を保証する，各種試験設備。
強度

引張圧縮試験器

JIS A 1408「建築用ボード類 の曲げ及び衝撃試験」に規定 される，圧縮•引張試験ができ る万能試験器です。荷重2ton fまでの試験が可能です。

面内せん断試験器
JIS A 1414「建築用成材（パ ネル）及びその構造部分の性能試験方法」に規定される面内せん断試験器です。木造住宅の壁の強度を試験する装置 です。

曲げ強度・たわみ試験器
曲げ強度，たわみを測定する為の装置です。
床の局部曲げ試験では，80の の加圧板により荷重400kgf までの試験を行っています。

圧 縮 破 壊 試 験 器

大型の圧縮強度試験器です。荷重10，20，40tonfの3種類のロードセルで，コンクリート構造物の曲げ・せん断破壊試験を行っています。

化学物質

高速液体クロマトグラフ
高速液体クロマトグラフィーとい う分離法を用いてホルムアル デヒドなどの水溶性の物質の分析•測定を行います。

小型チヤンバー試験器

JIS A 1901「小型チャンバー法」に基づき建築材料から放散される揮発性有機化合物 （VOC），ホルムアルデヒド及び他のカルボニル化合物を採取 します。

湿度

調湿試験器

JIS A 1470－1「湿度変動によ る吸放湿試験方法」に規定さ れる吸放湿試験ができます。 この試験を行うことで製品の調湿性能がわかります。

断 熱 実 験 棟

8 畳•RC構造の4戸の実験箱 です。室温，コンクリートの内部 の温度，空調時の消費電力な どを断熱構造別に調べる事が できます。

断 熱 試 験 器

JIS A 1420「住宅用断熱材及 び断熱性能試験方法」に規定 される断熱性能試験器です。断熱材を通して外へ逃げる熱量を計算し，断熱性能を算出 するものです。

床先行工法について

現状との比較

床先行エ法の現状と，ジャストフロアーの床先行エ法の違い。

置が必要となります。
また，この補強脚が通常の支持脚以上に音を伝えやす いため，全体の遮音性能を悪くしています。

将来の間取り変更

補強脚を新しい間仕切り壁の直下に設置する必要があ ります。

ジャストフロアーの床先行工法

88
455

1，820
※現状と比較してm²たり約2割脚の本数が多い。
縦 455 mm 横 455 mm の等間隔で支持脚が設置さ れ，また，受け材も長尺型を使用しているため床面強度のバラツキが小

間仕切り壁の直下でも補強脚を必要としません。
また，音を伝えやすい補強脚を使用しないので，遮音性能を悪くすることがありません。

将来の間取り変更

補強脚を必要としないので，二重床部分に手を加えず に自由に変更できます。

ジャストフロアーの床先行工法－間仕切り壁の荷重を加えた，実験室でのデーター

- 試験施設： 200 mm 厚RCスラブの壁式構造自社実験室
- 試験体：縦2770mm，横3680mm栗フローリング 12 mm仕上げ，床高 150 mm （商品タイプ：JSOS使
－間仕切り壁：用）
石膏ボード仕上げの重量に準じた約130kgの
－＂位置 間仕切り壁を設置
試験体（1）支持脚真上に間仕切り壁
試験体（1）
試験体（2）

中心周波数（Hz）	63	125	250	500	1 K	2K	4K	中心周波数（Hz）	63	125	250	500	1K	2K	4 K
	62.9	63.2	65.2	63.8	65.3	65.7	63.9		69.5	64.1	58.6	44.8	34.0	26.6	22.3
試験体（1）支持脚真上に間仕切り壁								試験体（1）支持脚真上に間仕切り壁							
	54.6	52.0	44.9	36.1	26.8	16.4	10.9		68.0	55.8	43.3	28.8	22.0	17.2	6.
	8.3	11.2	20.3	27.7	38.5	48.0	53.0	$\begin{gathered} \text { 床輀䡴音じル } \\ \text { 低減量(dB) } \end{gathered}$	1.5	8.3	15.3	16.0	12.0	9.4	5.8
試験体（2）支持脚中間に間仕切り壁								試験体（2）支持眰中間に間仕切り壁							
	55.3	51.6	45.0	36.0	27.1	16.7	10.8		65.0	56.5	43.1	28.5	19.5	15.5	13.1
$\begin{gathered} \text { 床冓䡴しべル } \\ \text { 音減量(dB) } \\ \hline \end{gathered}$	7.6	11.6	20.2	27.8	38.2	49.0	53.1		4.5	7.6	15.5	16.3	14.5	1.1	9.2

試験方法：$\phi 80 \mathrm{~mm}$ の加圧板に980N（100kgf）の荷重をかけ， 5 分間例完位置挂した後の変位を測定

	測定値（ mm ）						
試験体	A	B	C	D	E	F	平均
（1）	1.7	1.8	3.6	2.7	3.4	3.9	2.85
（2）	2.2	2.1	3.2	2.7	3.3	3.4	2.82

[^0]

測定方法につて

実建物における歩行音等と，JIS衝撃源による床衝撃音の対応性。

現在，重量床衝撃音の測定方法において，バングマシン（タイヤ衝撃源）とボール（インパクトボール）で加振する2通 りの方法がJISで定められています。
過去のデータはバングマシンによるものが圧倒的に多いのですが，最近では，集合住宅での苦情の原因となる歩行 や小走り，椅子からの飛び降り等によって生じる衝撃音は，バングマシンよりボールの方がより近いという発表が数多 くあります。
－文献調査等からみた床衝撃音に関する一連の考察（抜粋）
日本建築学会大会学術講演梗概集
（近畿）2005年9月

4．歩行等とJIS衝撃源による床衝撃音の対応性

SWG メンバーを中心とする受聴者22名を対象に，壁式構造の床衝撃音試験装置を用いて，幼稚園児 や小学生，成人の歩行，小走り，椅子からの飛び降り などにより生じる床衝撃音と，JIS衝撃源による床衝撃音を試聴してその対応性を検討した。床仕上げ構造 は，200mm厚の試験床が乾式二重床（LH－60，LL -50 ）， 150 mm 厚の試験床がフェルト + カーペット（LH －55，LL－40）である。なお，受音室は，ソファーやカーテ ンで所定の残響時間が確保されていた。また，試聴と同時に，各床衝撃音をダミーヘッドを用いて収録した。
表－3に，「 200 mm 厚試験床＋二重床」の各床衝撃音試聴時に得られた意見の例を示す。なお，表中の＂音 の大きさ＂は，バングマシンによる床衝撃音を10として，他の床衝撃音を10段階で表したものである。
これらの結果を見ると，バングマシンによる床衝撃音 の周波数特性や音の大きさが，歩行や，椅子からの飛び降り等によって生じる床衝撃音に近いとする意見 も若干あるが，床仕上げ構造が乾式二重床の場合， バングマシンよりも高周波成分を多く含むボールの方 が，歩行や小走り，椅子からの飛び降り等によって生 じる床衝撃音に近いとの意見が多数を占めている。

5．まとめ

湯垢衝撃音SWGで実施した床衝撃音に関する既往の文献やインターネット掲示板の調査結果について， また，SWGメンバーを中心に実施した歩行や椅子か らの飛び降りとJIS衝撃源による床衝撃音の対応性に関する試聴結果について，概要を報告した。
既往の文献やインターネット掲示板の調査からは，近年，床衝撃音に関する研究が活発に行われ，床ス ラブ厚の増加など，建物の性能向上が確実になされ ているにも係わらず，床衝撃音の問題は絶えることなく生じていることが確認された。また，床衝撃音に関する

書き込みには，原因が住まい方によるものと思われる ものも多く，居住者側の要求と住宅供給者側の意識 の統一が重要と推察された。さらに，＂床衝撃音＂や＂L＂ などの用語が書き込みに利用されることは少なく，未 だ一般消費者にこれらの用語はあまり浸透していない ことが示された。
最後に，歩行等とJIS衝撃源による床衝撃音の対応性からは，今回対象とした乾式二重床の場合，JISで規定する衝撃源の中で，衝撃力特性（2）を有する衝撃源（ボール）による床衝撃音が，歩行や小走り，椅子からの飛び降り等によって生じる床衝撃音に近いと

表－3 床衝撃音試聴時の意見の例

動作	実行者	$\begin{gathered} \hline \text { 音の } \\ \text { 大きさ } \end{gathered}$	コメント
$\begin{aligned} & \text { 歩 } \\ & \text { 行 } \end{aligned}$	年長女子	$\stackrel{0}{\sim}$	・ボールが近い －かすかに聞こえる •聞二えない ・ほとんど聞こえない
	小2男子	$\begin{gathered} 0 \\ \sim 0.5 \\ \hline \end{gathered}$	・ボールが近い ・かすかに聞こえる •聞二えない ・ほとんど聞こえない。たまにドンドン
	小5女子	1	\cdot ボールが近い ・ボールが近いが，より小さめ ・ほとんど聞こえない •特タッビングマシンが近い，音量小
	成人男性	2	－ボールが近い ・ボールの弱めが近い －かすかにドシンとした音 •空気の圧力波を感じる •「ドンドン」 1 低温が強い。聞こえる
	成人女性	$\begin{gathered} 1 \\ \sim 2 \\ \hline \end{gathered}$	・ボールが近い ・ボールの弱めが近い \cdot ほとんど聞こえない •「ドンドン」，聞こえるという程度
$\begin{aligned} & \text { 小 } \\ & \text { 走 } \end{aligned}$	年長女子	$\begin{gathered} 1.5 \\ \sim 2.5 \end{gathered}$	－ボールが近い －たまにトントン - ボールが近いF特，音量小 - たまに聞こえる強い音はボール弱めが近い - 「ドンドン」低音が強い。バングマシン・ボール・タッビングマシンのどれよりも小さい
	小2男子	$\stackrel{2}{\sim 3}$	
	小5女子	2	・ボールが近い ・ボールが近いが，より小さめ •少し聞こえる －ボールとタッビングの中間。「ドンドン」
	成人男性	$\begin{gathered} 3 \\ \sim 4 \\ \hline \end{gathered}$	－ボールが近い －ボールの弱めが近い ドンドンといった音が小さく •歩行に近い音だ，よく聞こえる
	成人女性	2	- ボールが近い－ボールの弱めが近い - トントンと軽い音がかすかに聞こえる - 「ゴンゴン」，歩行と似た大きさで，やや高めの音
	年長女子	$\stackrel{2}{\sim 4}$	- ボールが近い ・ボール20cmや50cmが近い - ボール 50 cm 程度の音。ドスンといった感じ - 「トーン」と硬い音。音の大きさはボールの1mが近い。
	小2男子	$\begin{gathered} 3 \\ \sim 4 \end{gathered}$	- ボールが近い - ボール50cmと同じように聞こえる - 音量小 - ボール 70 cm 程度の音。ただしもう少し軽い音で低音成分は少ない - 「トーン」と「ドーン」の中間。やや低い音が混じる
	小5女子	$\stackrel{4}{\sim}$	・ボールが近い \quad •特タッヅングマシンが近い ・ボール 70 cm 程度の音。ただしもう少し軽い音で低音成分は少ない
	成人男性	6	- ボールが近い - 音量大 - 「トーン」と硬い音。音の大きさはバングマシンとボール1mの中間
$\begin{aligned} & \text { 走 } \\ & \text { 回 } \\ & \text { 号 } \end{aligned}$	未就学 ～小5 7名一斉	$\stackrel{6}{\sim 6.5}$	- ボールが近い - ボールの連続か，タッピングマシンが近い トトコトコ様子がよくわかる，ボール 20 cm ぐらいの感じ？ - F特ダツピングマシンが近い，音量大 - 音の大きさはバングマシンが近いが，硬い音

音について－重量床衝撃音

生活音との相関

生活実感に対応した，床衝撃音データ。

マンションの音に関するクレームは，常について回る深刻な問題です。特に，子供が走り回ったり飛び跳ねたりする音 がクレームになるケースが多く見られます。
なぜ，いつまでたつても改善されることが無いのでしょうか。
当社では，特にこの子供達の生活音を防音することに力を入れ，研究•開発を行っています。

子供のジャンプや走る音の解析

ジャストフロア—を施工した200mmスラブ厚の箱型実験室で，3歳から6歳児を対象にした子供達24人の協力のも と，ジャンプの音，走る音の周波数特性と，バングマシン，インパクトボールの周波数特性を比較しました。

※AP（dBA）は，周波数重み付け特性Aにおける周波数しベルの全パワ一値。
※バングマシンとインパクトボールの測定は，子供の動作範囲と合わせるため，試験体中央部の1 カ所のみの値。

－子供の生活音を遮音するためには，インパクトボールのデータに注目することが重要

タイヤによる衝撃音を子供による衝撃音と比較すると，63Hz時には数値が大きく離れ，125Hz 時には逆に近くなっています。それに比ベ，インパクトボールによる衝撃音のグラフの形状は，子供の動作による衝撃音のグラフ の形状によく似ていて，周波数特性がほぼ同じである事が分かります。

遮音性能の再現性

「カタログ値は，あくまで試験室でのものなので，現場でその性能が出なくても仕方ない。」
「10デシベル程度のずれは，おかしくない。」
このような話を耳にしますが，もし，まるで再現しないことが当たり前だとしたら，カタログ値など何の意味もありません。本当に再現することが出来ないのか，検証しました。

試験室と実現場での測定値を比較

ジャストフロア一を施工した200mmスラブ厚の箱型実験室と，実験室と同じジャストフロア一を施工した200mmスラブ厚の実建物での床衝撃音レベルとで，その低減量の再現性を比較しました。

実建物と実験室での測定結果

衝 撃 源	軽量床衝撃源 タッピングマシン					重量床衝撃源 インパクトボール			
中心周波数（Hz）	125	250	$50{ }^{5}$	1000	2000	63	125	250	$50{ }^{-1}$
実建物 素面床衝撃音レベル	65.0	66.1	64.0	65.0	66.2	65.6	62.1	57.6	44.8
実建物 施工後床衝撃音しベル	48.3	40.4	31.5	25.0	23.7	58.8	48.1	35.8	25.3
実建物 床衝撃音しベル低減量	16.7	25.7	32.5	40.0	42.5	6.8	14.0	21.8	19.5
実験室 素面床衝撃音レベル	66.5	66.7	65.2	66.5	68.5	65.6	61.7	55.7	45.5
実験室 施工後床衝撃音レベル	52.7	42.9	34.8	26.8	18.2	63.9	55.8	37.9	25.7
－実験室 床衝撃音しべル低減量	13.8	23.8	30.4	39.7	50.3	1.7	5.9	17.8	19.8

参考に，前ページの測定結果との比較として，同じく24人の子供達により，実験室と同じジャストフロア一を施工した 200 mm スラブ厚の実建物での床衝撃音レベルとで，再現性を比較しました。

実建物での測定結果

No．				ジャンプの音 中心周波数（Hz）					走る音 中心周波数（Hz）				
	別 齢	（cm）	（kg）	63	125	250	500	AP（dBA）	63	125	250	500	AP（dBA）
1	女 5	108	18	59.1	46.1	24.5	22.5	34.6	53.7	40.1	25.2	32.2	39.0
2	女	100	15	54.9	44.8	23.0	12.6	30.2	53.9	45．6	35.9	23.8	30.8
3	6	10	17	60.7	50.9	34.0	17.7	37.8	57.5	47.5	29.1	25.0	33.7
4	女 5	110	7	64.9	54.5	36.4	23.8	41.4	60.2	－52．4	－35．2	27.4	$\overline{6} \overline{6} .9$
5	男 4	88	5	55.2	47.5	6.5	15.4	33.9	50.9	36.6	21.7	25.5	39.4
6	女 6	96	17	56.7	50.5	2.0	18.8	35.8	54.0	39．8	37.0	13.7	29.8
7	男	110	18	54.3	1.1	9.6	15.6	35.0	54.2	50.1	29.0	20.1	33.4
8	女 4	100	13	52.7	47.8	30.9	14.8	32.7	51.8	43.1	26.9	25.3	30.2
9	男 4	106	17	55.7	54.2	36.9	18.5	39.1	55.1	46.1	30.7	25.7	33.6
10	女	10	20	59.1	51.0	35.1	18.9	35.8	53.2	47．3	－31．6	18.0	$3 \overline{3} .4$
11	女 6	115	19	52.5	45.4	8.3	13.9	31.2	52.5	40.6	24.4	13.3	32.4
$\overline{12}$	女	105	20	53.3	7.2	7.7	11.8	31.5	49.9	42．8	25.5	14.7	28.7
13	男 4	110	20	51.2	42.5	22.2	13.4	29.2	51.7	44.0	28.0	21.4	31.1
14	女 5	114	19	62.4	56.4	36.6	27.0	42.3	57	－51．9	40.9	29.7	$3 \overline{7}$.
15	女 3	91	13	44.1	9.9	0.6	16.5	21.9	50.2	38.7	23.4	13.9	26.7
16	女	97	13	54.1	48.4	30.3	15.9	34.1	56.1	－ 44.7	－23．4	15.5	32.4
17	男	100	15	60.1	53.0	36.3	22.3	38.9	48.3	41.7	30.4	24.7	35.5
18	女	98	14	59.5	53.4	35.1	21．0	37.6	51.8	－$\overline{2} \overline{2} .2$	23.7	13.0	29.0
19	女 4	03	16	56.4	47.7	7.2	16.1	33.7	48.4	36.1	22.5	15.5	25.8
20	女	07	17	58.4	1.9	3.7	18.6	37.8	53.4	42.5	27.2	18.9	30.4
21	男	90	12	． 1	3.4	6.8	13.8	28.3	48.3	35.7	23.3	17.1	27.1
22	女	90	12	52.4	50.5	1.9	6.0	35.9	53.1	44．1	24.9	16.1	30.9
23	男	101	16	46.5	37.5	6.3	24.0	27.6	45.1	41.1	27.2	19.5	28.6
24	男 4	106	18	61.3	52.9	36.2	19.7	39.1	54.4	46． 8	32.3	22.1	32.9
	24名	平均値		55.7	48.3	30.5	17.9	34.4	52.7	43.4	28.3	20.5	32.1

実験室での測定結果

実験室での平均値 （前ページより）	中心周波数（ Hz$)$				
	60.4	125	48.1	250	200
実験室 走る音	60.9	46.2	29.3	18.4	35.9

－試験室の測定値（カタログ値）は，実建物でも再現できる。

以上の結果から，試験室と実建物では，製品の性能，工法と正しい施工により，同等，若しくはそれ以上の性能を発揮できることが分かりました。

音について－遮音二重床の選び方

間違った選び方
カタログ値が実建物で再現しない理由。

「推定L等級」の問題点

従来多くのカタログ等に表記されてきた「推定 L 等級」は，実験室で最良の条件下による試験結果から算出した推定値であり，多くの場合実建物では再現しません。
その理由として，
－最近の実建物のスラブ厚は 200 mm 以上が多いが，実験室の スラブ厚は， 200 mm に比較してよりよい低減量が得られる15 Omm厚で行われていた。（図1）
－実験室での測定条件と，実建物の納まりが同じではない。特 に際根太を使用すると，壁からの伝播がより大きくなる。（図

実建物では，防音用の支持脚と音を伝えやすい補強用の支持脚が併用されているが，カタログ値は防音用の支持脚のみ のデータが用いられている。
－上記に加え，床先行工法の場合，間仕切り壁の荷重が二重床にかかり，それを支える補強用ゴムがより音を伝えやすくな っている。（図3）

等があります。

「推定し等級」の算出方法に関して

たとえば，「推定L等級」が重量床衝撃音でLH－40の製品である場合，実験室でLH－40の空間性能だったという ことではありません。実験室で得られた低減量を「推定L等級」を算出するための標準的な床衝撃音レベルから引い た数値を読み取った値が「推定L等級」です。
ここで使用する標準的な床衝撃音レベルの想定条件（スラブ厚，面積等）が，現在では一般的な条件ではなくなっ てきており，実建物での再現性が低い原因の一つとなっています。

一般的に，実験室素面の床衝撃音レベルより算出用の床衝撃音レベルのほうが低いため，実験室の施工後の床衝撃音レベル（L等級）は，推定 L 等級より悪い場合が多い。
－実建物のスラブ素面の床衝撃音レベルが算出用の床衝撃音レベルより大きい場合には，実建物の施工後の床衝撃音レベル（L等級）は，推定L等級より悪くなる。

まだ使われ続ける「推定L等級」

「推定L等級」は，ある限られた条件下での性能を表す指標であり，必ずしも実建物の空間性能に対応するものでは ないにもかかわらず，実建物での保証値であるかのような誤解を招いてきました。このような問題点から，「推定L等級」の評価は平成19年に廃止となっています。
しかし，「推定L等級」が現在でもカタログに表記されている場合があり，一部では，廃止の事実を知らなかったり，「今 まで使用してきた値だから特に問題ないだろう」といった認識の低さから未だに選択基準とされ，現場で音が止まらな い原因となっています。

正しい選び方

新たな試験規格と表記方法

従来，カタログ等に表示されてきた「推定L等級」は，その値が実建物に対応するものではないにもかかわらず，実建物の保証値であるかのような誤解を招いてきました。また，平成19年に，実建物での性能への対応性を向上させる ことなどを目的として床衝撃音低減性能の新しい測定方法を規定したJIS規格の改正が行われました。こうした背景 のもと，床材関係の工業会においても，床材の供給者のみならず設計者•施工者•使用者などの関係者にも理解し やすい，新たな床衝撃音低減性能の等級表示を導入しようとする取り組みが行われてきました。現在，床材関係の3工業会より要請を受けて財団法人日本総合建築試験所に設置された検討委員会が「床材の床衝撃音低減性能の表現方法に関する検討委員会報告書」を公表し，その中 に示された「等級表記指針」に基づいた「 ΔL 等級表記」に切り替 わり，公的試験機関での「推定 L 等級表記」は廃止されました。

新たな試験規格（カテゴリー II：乾式二重床などの場合）
実験室：スラブ面積 $20 \mathrm{~m}^{2}$ ，試験床面積は $10 \mathrm{~m}^{2}$ ，床板 200 mm厚の壁式構造実大実験棟。
試験体：各部の納まりは，実現場での施工方法•仕様（際根太 の有無，幅木の仕様，接着剤の使用等）を再現する必要がある。
衝撃源：軽量は従来のタッピングマシンを用いる。
重量はタイヤ衝撃源（特性1）とゴムボール（特性2） の 2 種類。但し，現在低減性能 (ΔL) 等級が決めら れているのは旧来のタイヤ衝撃源のみ。
－新たな表記方法（カテゴリーII：乾式二重床などの場合）
低減量を表す Δ（デルタ）と，カテゴリーを表すIIを付します。
軽量床衝撃音低減性能：$\Delta L L(I I)-5 \sim \Delta L L(I I)-1$
重量床衝撃音低減性能：$\Delta \mathrm{LH}(\mathrm{II})-4 \sim \Delta \mathrm{LH}(\mathrm{II})-1$

床村のカテゴリー分類

カテゴリーI ‥マット，カーペット等，薄くて柔らかい材料 カテゴリー $\mathbb{I} \cdots$ 乾式二重床，発ブラ系床等，変形が平面的に広がる材料 カテゴリーII \cdots 張力を用いて施工するじゆうたん等の材料

軽量床衝撃音低減性能の等級（ $\Delta L L$ 等級）

表記する 等 K_{3}	軽量床衝撃音レベル低減量の下限値				
	125 Hz 帯域 250 Hz 帯域 500 Hz 帯域	1 kHz 帯域	2 kHz 帯域		
$\Delta \mathrm{LL}-4$	24 dB	30 dB	34 dB	36 dB	
$\Delta \mathrm{LL}-3$	5 dB	19 dB	25 dB	29 dB	31 dB
$\Delta \mathrm{LL}-2$	0 dB	9 dB	20 dB	24 dB	26 dB
$\Delta \mathrm{LL}-1$	-5 dB	4 dB	10 dB	19 dB	21 dB

※ $\Delta L L$ 等級は，JIS A 1440－1に基づき標準軽量衝撃源（タッピングマシン）を用いて測定された床材の軽量床衝撃音低減性能の等級表記。

重量床衝撃音低減性能の等級（ $\Delta \mathrm{LH}$ 等級）

表記する 等 級	重量床衝撃音レベル低減量の下限値			
	63Hz帯域	125Hz帯域	250 Hz 帯域	500 Hz 帯域
$\Delta \mathrm{LH}-4$	5 dB	－5dB	－8dB	－8dB
$\Delta \mathrm{LH}-3$	OdB	－5dB	－8dB	－8dB
$\Delta \mathrm{LH}-2$	－5dB	－10dB	－10dB	－10dB
$\Delta \mathrm{LH}-1$	－10dB	－10dB	－10dB	－10dB
※ Δ LH等級は，JIS A 1440－2に基づき衝撃力特性（1）の標準重量衝撃源 （タイヤ衝撃源）を用いて測定された床材の重量床衝撃音低減性能の等級表記。				

Δ 等級による選択と，注意点

Δ 等級は，一定水準で施工条件を標準化した試験であり，低減量を用いた製品単体の性能を表す方法であること から，製品相互の比較が容易に出来ます。
但し，低減量といいながらも，上記等級下限値で赤字で示した部分（マイナスの値）は，床構造が音を増幅してしまう ことを意味していることから，Δ 等級のみでの判断には注意が必要です。
特に重量床衝撃音は最高等級であってもマイナスの値となっていますが，この値は下限値であるため，同じ等級でも製品によりその内容は違ってきます。子育て世代を対象とした集合住宅等の重量床衝撃音対策では，Δ 等級と共 にカタログ等で提供される低減量にマイナスが有るか無いかを参考にして，比較•選択することが重要です。

（1）	SJ－S	硬度 45° 防振ゴム＋床パネル $23 \mathrm{~mm}+$ 捨て張り（スラボー 18 mm ）
（2）	SJ－W	硬度 45° 防振ゴム＋床パネル $23 \mathrm{~mm}+$ 捨て張り（合板 12 mm ）
（3）	SJ－W2P	硬度 45° 防振ゴム＋床パネル $23 \mathrm{~mm}+$ プラスターボード（ $12.5 \mathrm{~mm} \times 2$ 枚）＋捨て張り（合板 12 mm ）
（4）	SJL	$>$ 低床用硬度 45° 防振ゴム＋床パネル $23 \mathrm{~mm}+$ 捨て張り（合板 12 mm ）
（5）	SJY	音性能優先ソフト防振ゴム＋オリジナル温水式床暖パネル

ノーマルタイプ乾式遮音二重床

（6）	JSOS
（7）	JSOH
（8）	JST
（9）	JSH

音性能優先ソフト防振ゴム＋床パネル23mm
音性能優先ハード防振ゴム＋床パネル 23 mm
たわみ性能優先防振ゴム + 床パネル 23 mm
補強用ゴム + 床パネル23mm

性能試験条件

－局部曲げ試験

試験方法	$: 80 \phi$ 加圧板の中心から4方
	向に140mm離れた位置の変
	位を測定し，その平均値を表
	記する。
試験機関	：自社実験室
測定点数	$:$ 右図A～Dの4点
試 験器	$: ~$ 曲げ強度・たわみ試験器（P18）

－遮音性能試験

試験方法 ：JIS A 1440－1，－2
試験施設 ：200mm厚RCスラブの壁式構造実験室
試験機関 ：JSOH，JPOHタイプは，（財）ベターリビング他は，自社実験室
加振点数：対角5点
衝撃源：標準軽量衝撃源タッピングマシン標準重量衝撃源（1）バングマシーン標準重量衝撃源（2）インパクトボール

ジャストフロアーの遮音性能試験は，より実生活の騒音に近い音源を使用することが実空間での満足に結びつくとの考えから，重量床衝撃音の測定にはボールを使用しています。但し，現在等級表示の指針が無いため，低減量での性能表示としています。
また，同時に記載してある床衝撃音レベル測定値は実験室での実測値であり，推定用床衝撃音レ ベル計算値から低減量を差し引いて算出する「床衝撃音レベル推定値」ではありません。

遮音性能試験における（財）ベターIビングの実験室のデータと自社実験室のデータとの相関について

－実験室の構造

（財）ベターリビング：JIS A 1440－1，－2に基づく壁式構造実験室。
自 社 ：構造はJIS A 1440－1，－2に準じていますが，打ち込み型枠材に使用したスラボー が内壁面に付いています。残響時間については，JIS A 1440－1，－2に準じて調整し てあります。（大きさは，P17参照）
－（財）ベターリビングでの測定結果（試験日：2009年2月19日）と，
その試験体（受け材とボルトは新規）を用いた自社実験室での測定結果の比較
－（1）JSOHの軽量床衝撃音測定結果

（財）	中心周波数（Hz）	63	125	250	500	1K	2 K	4K
タ	素面状態規準化㕅重撃音しベル（dB）	65.1	72.3	74.5	72.2	72.9	73.5	71.2
$\begin{aligned} & \text { 少 } \\ & \hline \end{aligned}$	試料施工状態規準化床衝撃音しベル（ ${ }^{2}$ B）	61.2	61.2	59.4	48.8	37.9	28.6	12.8
グ	床衝撃音しベル低減量（dB）	3.9	11.1	15.1	23.4	35.0	44.9	58.4
$\begin{aligned} & \text { 自 } \\ & \text { 社 } \\ & \text { 実 } \\ & \text { 験 } \\ & \text { 室 } \end{aligned}$	中心周波数（Hz）	63	125	250	500	1K	2 K	4K
	素面状態規準化床衝撃音しベル（dB）	62.9	63.2	65.2	63.8	65.3	65.7	63.9
	試料施工状態規準化床衝撃音しベル（ ${ }^{(1)}$	59.3	54.6	51.3	41.2	31.3	22.6	12.5
	床衝撃音しベル低減量（dB）	3.6	8.6	13.9	22.6	34.0	43.1	51.4

－（1）JSOHの重量床衝撃音測定結果

（財）	中心周波数（Hz）	63	125	250	500	1 K	2 K	4K
各	素面状態規準化床衝撃音しべル（ dB ）	71.9	68.5	65.6	53.2	40.6	32.7	－
$\begin{aligned} & \text { リ } \\ & \text { ビ } \end{aligned}$	試料施工状態規準化床衝撃音しベル（dB）	76.6	62.6	55.3	41.3	27.6	18.1	－
隼	床衝撃音しベル低減量（dB）	－4．7	5.9	10.3	11.9	13.0	14.6	－
$\begin{aligned} & \text { 自 } \\ & \text { 社 } \\ & \text { 実 } \\ & \text { 験 } \\ & \text { 至 } \end{aligned}$	中心周波数（Hz）	63	125	250	500	1K	2 K	4K
	素面状態規準化床衝撃音しベル（ ${ }^{2}$ B）	69.5	64.1	58.6	44.8	34.0	26.6	22.3
	試料施工状態規準化床衝撃音しべル（ ${ }^{(1)}$	72.4	56.9	47.4	34.9	27.0	24.3	21.2
	床暒擊音しベル低減量（dB）	－2．9	7.2	11.2	9.9	7.0	2.3	1.1

試験方法 ：JIS A 1440－1，－2
試験施設 ：200mm厚RCスラブの壁式構造実験室加振点数：対角5点
衝撃源：軽量床衝撃音はタッピングマシン
重量床衝撃音はボール（インパクトボール）
重量床衝撃音はボール（インパクトボール）
（1）JSOHを右図の条件で施工
試験体：（1）JSOHを右図の条件で施工
※が付いた値は測定値と暗騌音しべルの差が 6 dB 末満のため補正した値であり，参考値です。

A特性について

二重床の性能評価は，現在，Δ 等級（低減量）で行われますが，この評価 により各社製品の性能比較は出来ても，実際に人の耳で聞いたときにどの程度の効果を感じ取れるかまでは判断できません。
例えば，同じ Δ 等級であっても製品の特性として 125 Hz 帯の音をより大き く低減することが出来るA社製品と， 500 Hz 帯の音をより大きく低減するこ とが出来るB社製品とで，実際に使用した場合にどちらがより静かと感じる かは分かりません。
そもそも人の耳は低周波になるほど，また，高周波になるほど感度が下がり ますので，マイクロフォンで計測した値がそのまま人の耳に対しての騒音の大小にはなりません。
それに対し，人間の耳の感覚を考慮して補正をした値（周波数重み付け特性）がA特性です。
本カタログでは，A特性による測定値の低減量を「AP（dBA）」（AP：周波数分析をしていない直接平均全パワー）として表示しています。

例）弊社製品 SJ－S 軽量床衝撃音のA特性低減量 32.6 dB
この製品の場合，軽量床衝撃音の素面のA特性による測定値は 72.7 dB でしたので，右表にあてはめると，軽量床衝撃音に関しては騒々しい事務所が図書館程度まで静かになったことになります。
Δ 等級と共にA特性による性能表示がより多くのメーカーで採用されれ ば，実建物に則したより正確な性能比較が出来るようになります。

騒音レベル	騒 音 例
20 dB	木の葉のふれあう音
30 dB	ささやき声
40 dB	図書館，深夜の市内
50 dB	静かな事務所，住宅街
60 dB	普通の会話，TV・ラジオの音
70 dB	騒々しい事務所，電咶のベル
80 dB	電車の車内，ピアノ
90 dB	騒々しい工場，カラオケ
100 dB	電車が通るときのガード下
110 dB	自動車の警笛（2m前方）

商品の説明

高性能遮音二重床

 －
高い硟音性能を実建物で実垷！

音対策のためのスデに！ マソショヨのノ

捨て張りを使用することにより，ジャストフロア一の強度や剛性が更に向上するため，従来構造では使用でき なかった硬度 45° の柔らかい防振ゴムを使用することができ，床衝撃音低減性能が，更に向上しました。

（1）SJ－S＞硬度 45° 防振ゴム＋床パネル $23 \mathrm{~mm}+$ 捨て張り（スラボー 18 mm ）

基	床パネル	強化高圧木毛セメント板 スラボー
	＂サイズ	$453 \mathrm{~mm} \times 1820 \mathrm{~mm}$（ 23 mm 厚）
本	長尺受け材	強化高圧木毛セメント板 スラボー
構	＂サイズ	$88 \mathrm{~mm} \times 1820 \mathrm{~mm}$（ 23 mm 厚）
造	支持脚	硬度45 の防振ゴム付支持脚
	捨て張り	強化高圧木毛セメント板 スラボー（18mm厚）

－遮音性能試験							
中心周波数（Hz）	63	125	250	500	1k	2k	AP（dBA）
		14.1	21.6	29.9	42.9	54.4	32.6
	7.9	1.4	3.9	5.6			4.7
重量床衝撃音（ボール） レベル低減量（dB）	4.6	10.8	16.1	20.8			10.1

試験方法：JIS A 1440－1，－2
試験施設： 200 mm 厚RCスラブの壁式構造実験室試験機関：自社実験室試験日：2012年7月31日衝撃源 －軽量床衝撃音はタッピングマシン重量床衝撃音はタイヤ（バングマシン）と， ボール（インパクトボール）

高性能遮音二重床

（2） $\mathrm{SJ}-\mathrm{W}$

硬度 45° 防振ゴム＋床パネル $23 \mathrm{~mm}+$ 捨て張り（合板 12 mm ）

基	床パネル	強化高圧木毛セメント板 スラボー
	＂サイズ	$453 \mathrm{~mm} \times 1820 \mathrm{~mm}$（ 23 mm 厚）
本	長尺受け材	強化高圧木毛セメント板 スラボー
構	＂サイズ	$88 \mathrm{~mm} \times 1820 \mathrm{~mm}$（ 23 mm 厚）
造	支持脚	硬度 45° の防振ゴム付支持脚
	捨て張り	合板（ 12 mm 厚）

■遮音性能試験							
中心周波数（Hz）	63	125	250	500	1k	2k	AP（dBA）
		12.6	20.3	29.3	42.3	54.1	31.4
重量床衝撃童（タイヤ）	5.2	0.8	3.4	5.7			2.6
	1.1	10.1	15.4	19.7			7.9

試験方法：JIS A 1440－1，－2試験施設：200mm厚RCスラブの壁式構造実験室試験機関：自社実験室
試験日：2012年8月2日
加振点数：対角5点
衝撃源 ：軽量床衝撃音はタッピングマシン重量床衝撃音はタイヤ（バングマシン）と， ボール（インパクトボール）

（3）SJ－W2P＞硬度 45° 防振ゴム＋床パネル $23 \mathrm{~mm}+$ プラスターボード $(12.5 \mathrm{~mm} \times 2$ 枚）＋捨て張り（合板 12 mm ）

軽量 $\Delta L L(I I)-5$ 重量 $\Delta L H(I I)-4$

基本構造	床パネル	強化高圧木毛セメント板 スラボー
	＂サイズ	$453 \mathrm{~mm} \times 1820 \mathrm{~mm}$（ 23 mm 厚）
	長尺受け材	強化高圧木毛セメント板 スラボー
	＂サイズ	$88 \mathrm{~mm} \times 1820 \mathrm{~mm}$（ 23 mm 厚）
	支持脚	硬度45 の防振ゴム付支持脚
	捨て張り等	プラスターボード2枚（12．5mm／厚）合板（12mm厚）

■遮音性能試験

中心周波数（ Hz ）	63	125	250	500	1k	2k	AP（dBA）
		16.2	24.2	31.5	43.9	55.1	34.6
	8.5	3.3	6.3	8.3			5.9
重量床㣫䡴音（ボール）	5.6	12.1	18.6	21.9			11.4

試験方法：\｜S A 1440－1－2
試験施設：200mm厚RCスラブの壁式構造実験室試験機関：自社実験室
試験日：2012年8月3日加振点数：対角5点
衝撃源 ：軽量床衝撃音はタッピングマシン重量床衝撃音はタイヤ（バングマシン）と， ボール（インパクトボール）

－局部曲げ試験			測定：自社実験室	
加圧点	変位（mm）			
	$\begin{gathered} 0.98 \mathrm{kN} \\ (100 \mathrm{kgf}) \end{gathered}$	除荷直 後	$\begin{array}{\|c\|} \hline 3.92 \mathrm{kN} \\ (400 \mathrm{kgf}) \end{array}$	除荷直 後
A	1.6	0.2	9.8	2.3
B	1.9	0.3	9.9	2.3
C	1.4	0.2	8.9	1.4
D	1.7	0.3	9.4	1.7
A～Dそれぞれの中心から4方向に140mm離れた位置の変位を測定した平均値。				

CH7 $2=0$ 高性能遮音二重床

（4）SJL 低床用硬度 45° 防振ゴム＋床パネル $23 \mathrm{~mm}+$ 捨て張り（合板 12 mm ）

軽量 $\Delta L L(\mathbb{I})-3$ 重量 $\Delta L H(\mathbb{I})-3$

	ベースパネル	強化高圧木毛セメント板 スラボー
基	＂サイズ	$453 \mathrm{~mm} \times 1820 \mathrm{~mm} 453 \mathrm{~mm} \times 910 \mathrm{~mm}$（ $23 \mathrm{~mm} /{ }_{\text {㫗 }}$ ）
本	ジョイント材	強化高圧木毛セメント板 スラボー
構	＂サイズ	$88 \mathrm{~mm} \times 1820 \mathrm{~mm} 88 \mathrm{~mm} \times 200 \mathrm{~mm}$（23mm厚）
造	支持脚	硬度 45° の低床用防振ゴム付支持脚
	捨て張り	合板（ 12 mm 厚）

■遮音性能試験

中心周波数（Hz）	63	125	250	500	1k	2k	AP（dBA）
$\begin{gathered} \text { 軽量床衝撃音しベル) } \\ \text { 低減量(dB) } \\ \hline \end{gathered}$		12.1	18.4	29.1	43.2	53.3	31.2
重量床㣫撃童（タイヤ） 童量 （dB）	0.3	1.6	6.0	10.2			1.7
重量床㣫僌音（ボール） Lベル彽減量（dB）	2.1	7.1	13.7	18.8			9.5

式験方法：\｜S A 1440－1－試験施設：200mm厚RCスラブの壁式構造実験室試験機関：自社実験室
試験日：2012年9月28日
加振点数：対角5点
衝撃源：軽量床衝撃音はタッピングマシン重量床衝撃音はタイヤ（バングマシン）と， ボール（インパクトボール）

■局部曲げ試験			測定：自社実験室	
加圧点	変位（mm）			
	$\begin{array}{\|c\|} \hline 0.98 \mathrm{kN} \\ (100 \mathrm{kgf}) \end{array}$	除荷直 後	$\begin{array}{\|c\|} \hline 3.92 \mathrm{kN} \\ (400 \mathrm{kgf}) \\ \hline \end{array}$	除荷直後
A	1.8	0.2	7.7	1.0
B	1.9	0.2	7.5	1.0
C	1.1	0.2	6.2	1.0
D	1.2	0.2	6.0	1.0
A～Dそれぞれの中心から4方向に140mm離れた位置の変位を測定した平均值。				

（5）SJY 音性能優先ソフト防振ゴム＋オリジナル温水式床暖パネル

軽量 $\Delta L L(\mathbb{I})-4$ 重量 $\Delta L H(\mathbb{I})-3$

■局部曲げ試験 測定：自社実験室

加圧点	変位（mm）			
	$\begin{gathered} 0.98 \mathrm{kN} \\ (100 \mathrm{kgf}) \end{gathered}$	除荷直 後	$\begin{gathered} 3.92 \mathrm{kN} \\ (400 \mathrm{kgf}) \end{gathered}$	除荷 直後
A	－	－	－	－
B	－	－	－	－
C	－	－	－	－
D	－	－	－	－
A～Dそれぞれの中心から4方向に140mm離れた位置の変位を測定した平均値。				

300
 mm
 スラブ厚300mmを200mmに！！

音対策によるスラブ厚の增分を，床構造で吸収することができま

従来200mmのスラブ厚で設計してきた物件を，上下階の騒音対策のためだけに300mmにしなければならない，とい う場合がありますが，高性能遮音二重床SJタイプは，スラブ厚増分 100 mm の遮音性能を補う性能を持っています。以下の比較試験は，スラブ厚300mmの実験室に従来構造の二重床を施工した場合と，スラブ厚200mmの実験室 に高性能遮音二重床SJタイプを施工した場合のLr値（ $=~ L$ 値）を比較し，同等以上の値であることを確認していま

床衝撃音レベル比較試験

－比較する構造

スラブ厚 300 mm 上に従来構造の二重床を施工した場合と，スラブ厚 200 mm 上にジャストフロアーSJ－Wを施工した場合の床衝撃音しベルを比較。

－測定条件

試験方法：JIS A 1440－1，－2
試験施設：300mm厚及び200mm厚RCスラブの壁式構造実験室
試験場所：自社実験室
衝撃源 ：標準軽量衝撃源（タッピングマシン）
標準重量衝撃源（1）（タイヤ）
標準重量衝撃源（2）（インパクトボール）

軽量床衝撃音レベル測定結果

（軽量床衝撃源：タッピングマシン）
－300mm厚スラブに従来構造二重床を施工

－200mm厚スラブにSJ－Wを施エ

中周潒数纪	31.5	63	125	250	500	1 k	2 k	4 k

Lr値	Lr，L－45							
SJ－W 低減量	1.8	6.0	12.1	19.5	28.0	40.3	50.5	53.5

※軽量床衝撃音しベルは，等価吸音面積を $10 \mathrm{~m}^{2}$ として規準化した値です。

－重量床衝撃音レベル測定結果

（重量床衝撃源：タイヤ）

300 mm 厚スラブに従来構造二重床を施工

	31.5	63	125	250	500	1k	2k	4k
$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \text { スラブ素 } \end{array}$	65.4	77.3	55.5	45.9	37.8	28.8	25.3	22.4
	71.0	82.7	61.7	50.7	40.2	28.8	20.9	
Lr値	$\mathrm{L}_{\mathrm{r}, \mathrm{H}^{-60}}$							
従来構造	－5．6	－5．4	－6．2	－4．8	－2．4	0.0	4.4	3.4

－200mm厚スラブにSJ－Wを施工

中心艁数䀦	31.5	63	125	250	500	1 k	2 k	4 k

Lr，値	$L_{r}, \mathrm{H}-50$										
$\begin{array}{c}\text { SU－W } \\ \text { 低減量 }\end{array}$	-0.5	4.4	1.9	6.5	9.7	6.0	5.4	-0.7			

ジャストフロア－SJ－W 試験体概略図 フローリング22m

■ 重量床衝撃音レベル測定結果 （重量床衝撃源：インパクトボール）
－300mm厚スラブに従来構造二重床を施工

中解波数缃	31.5	63	125	250	500	1k	2k	4k
	56.6	63.0	56.5	53.0	41.6	28.1	22.3	20.7
床衝撃音	61.6	70.3	52.6	44.4	31.1	19.0	22.3	18.6
Lr値	$L_{r, H^{-5}}$							
従来構造低減量	－5．0	－7．3	3.9	8.6	10.5	9.1	0.0	2.1

－200mm厚スラブにSJ－Wを施工

| 中调波数相 | 31.5 | 63 | 125 | 250 | 500 | 1 k | 2 k | 4 k |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 200 mm | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| スラブ素面 | 66.1 | 65.8 | 62.3 | 55.9 | 45.5 | 32.9 | 26.4 |

Lr，値	Lr，H－45								
SJ－W 低减量	-2.9	0.9	5.8	15.4	19.1	3.7	-0.8	-0.5	

（6）JSOS 音性能優先ソフト防振ゴム＋床パネル 23 mm

基本構造	床パネル	強化高圧木毛セメント板 スラボー	仕上げ材床パネル
	＂サイズ	$453 \mathrm{~mm} \times 1820 \mathrm{~mm}$（ 23 mm 厚）	
	長尺受け材	強化高圧木毛セメント板 スラボー	
	＂サイズ	$88 \mathrm{~mm} \times 1820 \mathrm{~mm}$（23mm厚）	
	支持脚	音性能優先•防振用支持脚 OS型	

中心周波数 (Hz)	63	125	250	500	1k	2k	AP（dBA）	試験方法 ：JIS A 1440－1，－2 試験施設： 200 mm 厚RCスラブの壁式構造実験室 試験機関：自社実験室 試験日：2012年10月23日 加振点数：対角5点 衝撃源 ：軽量床衝撃音はタツビングマシン重量床衝撃音はタイヤ（バングマシン）と， ボール（インパクトボール）	
軽量床㣫軗音しベル 低減量（dB）		13.6	19.9	27.0	35.9	51.2	31.2		
重量床㣫撃音（タイヤ） Lベル低減量（dB）	2.1	0.5	5.4	11.5			2.4		
重量床衝撃音（ボール） Lベル低減量 (dB)	－1．8	7.3	18.0	23.3			8.4		

■局部曲げ試験			測定：自社実験室	
加圧点	変位（mm）			
	$\left\lvert\, \begin{gathered} 0.98 \mathrm{kN} \\ (100 \mathrm{kgf}) \end{gathered}\right.$	除荷直 後	$\left\lvert\, \begin{gathered} 3.92 \mathrm{kN} \\ (400 \mathrm{kgf}) \end{gathered}\right.$	除荷直 後
A	1.8	0.1	8.0	0.4
B	1.7	0.1	8.0	0.4
C	1.7	0.1	7.9	0.6
D	1.8	0.1	8.6	0.5
A～Dそれぞれの中心から4方向に140mm離れた位置の変位を測定した平均值。				

（7）JSOH 音性能優先ハード防振ゴム＋床パネル 23 mm

基本構造	床パネル	強化高圧木毛セメント板 スラボー
	＂サイズ	$453 \mathrm{~mm} \times 1820 \mathrm{~mm}$（ 23 mm 厚）
	長尺受け材	強化高圧木毛セメント板 スラボー
	＂サイズ	$88 \mathrm{~mm} \times 1820 \mathrm{~mm}$（23mm）厚）
	支持脚	音栍能優先•防振用支持脚 OH型

■遮音性能試験

中心周波数（Hz）	63	125	250	500	1 k	2k	AP（dBA）	試験方法：JIS A 1440－1，－2 試験施設： 200 mm 厚RCスラブの壁式構造実験室 試験機関：自社実験室 試験日：2012年10月19日 加振点数：対角5点 衝撃源：軽量床衝撃音はタタツピングマシン 重量床㣫撃音はタイヤ（バングマシン）と，	
$\begin{aligned} & \text { 軽量床轗䡴(童しBベル) } \end{aligned}$		11.0	14.9	21.2	35.9	51.6	26.8		
$\begin{aligned} & \text { 重量床㣫冓童(タイヤ) (湦(dB) } \end{aligned}$	－6．5	－2．9	3.4	6.1			－4．4		
重量床衝撃音（ボール） レベル低減量（dB）	－2．0	6.3	9.8	11.0			5.6		

■局部曲げ試験 測定：自社実験室

加圧点	変位（mm）			
	$\begin{array}{\|c\|} \hline 0.98 \mathrm{kN} \\ (100 \mathrm{kgf}) \\ \hline \end{array}$	除荷直後	$\begin{array}{\|c\|} \hline 3.92 \mathrm{kN} \\ (400 \mathrm{kgf}) \end{array}$	除荷直 後
A	1.6	0.1	6.9	0.4
B	1.6	0.1	7.1	0.4
C	1.6	0.2	7.1	0.6
D	1.7	0.1	7.9	0.5
A～Dそれぞれの中心から4方向に140mm離れた位置の変位を測定した平均値。				

（8）JST
たわみ性能優先防振ゴム＋床パネル 23 mm

$\begin{aligned} & \text { 基 } \\ & \text { 本 } \\ & \text { 構 } \end{aligned}$造	床パネル	強化高圧木毛セメント板 スラボー
	＂サイズ	$453 \mathrm{~mm} \times 1820 \mathrm{~mm}$（ 23 mm 厚）
	長尺受け材	強化高圧木毛セメント板 スラボー
	＂サイズ	$88 \mathrm{~mm} \times 1820 \mathrm{~mm}$（ 23 mm 厚）
	支持脚	たわみ強度優先•防振用支持脚 T型

中心周波数（Hz）	63	125	250	500	1k	2k	AP（dBA）
		4.1	8.8	17.5	29.6	40.9	21.2
	－4．9	－6．5	－3．4	2.8			－4．5
重量床衝撃音（ボール）	－2．2	0.0	4.1	5.1			3.2

試験方法：JIS A 1440－1，－2 試験施設： 200 mm 厚RCスラブの壁式構造実験室	
試験機関：自社実験室	
試験日 ：2009年3月4日	
加振点数：対角5点	
衝撃源	：軽量床衝撃音はタッピン
	重量床衝撃音はタイヤ（バ
	ボール（インパクトボール）

（9）JSH 補強用ゴム＋床パネル 23 mm

軽量 $\Delta L L(I I)-1$ 重量 $\Delta L H(I I)-2$

$\begin{aligned} & \text { 基 } \\ & \text { 本 } \\ & \text { 構 } \end{aligned}$造	床パネル	強化高圧木毛セメント板 スラボー
	＂サイズ	$453 \mathrm{~mm} \times 1820 \mathrm{~mm}$（ 23 mm 厚）
	長尺受け材	強化高圧木毛セメント板 スラボー
	＂サイズ	$88 \mathrm{~mm} \times 1820 \mathrm{~mm}$（ 23 mm 厚）
	支持脚	補強用支持脚 H型

■遮音性能試験

中心周波数（Hz）	63	125	250	500	1k	2k	AP（dBA）
		－0．6	5.5	13.4	26.7	37.7	15.2
	－1．2	－9．3	－0．4	3.8			－3．5
重量床衝撃音（ボール） レベル低減量（dB）	－2．8	－5．9	1.6	4.3			－1．9

式験方法：US A 1440－1，－2
試験施設：200mm／厚RCスラブの壁式構造実験室
式験機関：自社実験室
試験日：2009年2月9日
加振点数：対角5点
衝撃源：軽量床衝撃音はタッピングマシン
重量床衝撃音はタイヤ（バングマシン）と， ボール（インパクトボール）

工法による比較

際根太，幅木，補強脚による音環境への影響。

基準試験体による試験結果

■試験体図

軽量床衝撃音レベル低減量（dB）

| 中心周波数（Hz） | 63 | 125 | 250 | 500 | 1 K | 2 K | 4 K | $\Delta \mathrm{LL}$ 等級 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |基準試験体 10.212 .620 .127 .5 38．3 49．3 $53.3 \Delta \operatorname{LL}(\mathrm{II})-4$

 4箇所幅木接触 5.7 5．7 $5.0|11.7| 21.835 .546 .651 .6 \Delta L L$（II）－2

－重量（ボール）床衝撃音しベル低減量（ dB ）

中心周波数 (Hz)	63	125	250	500	1 K	2 K	4 K

全周囲際根太使用	-2.6	-2.0	3.2	7.1	8.9	7.5	6.2

補強脚を併用	5.3	8.7	13.3	8.8	5.6	4.5	5.0

■遮音性能試験

試験方法 ：JIS A 1440－1－
試験施設 ： 200 mm 厚RCスラブの壁式構造実験室
試験機関 ：自社実験室
試験日：2009年3月14日
加振点数：対角5点
衝撃源：軽量床衝撃音はタッピングマシン
重量床衝撃音はボール（インパクトボール）

1際根太を使用した試験結果

■試験体図

－軽量床衝撃音レベル低減量（dB）

中心周波数 (Hz)	63	125	250	500	1 K	2 K	4 K	$\Delta \mathrm{LL}$ 等級											
:---	:---	:---	:---	:---	:---	:---	:---	:---		基準試験体	10.2	12.6	20.1	27.5	38.3	49.3	53.3	$\Delta L L(I I)-4$	
:---:	:---	:---	:---	:---	:---	:---	:---	:---	:---		全周囲際根太使用	1.6	-0.2	6.2	15.5	29.1	42.0	50.8	$\Delta L L(I I)-1$
:---	:---	:---	:---	:---	:---	:---	:---	:---		1箇所幅木接触 11.1	12.2	20.5	27.8	37.7	49.1	52.2	$\Delta L L(I I)-4$		
:---	:---	:---	:---	:---	:---	:---	:---	:---		4箇所幅木接触 5.7	5.0	11.7	21.8	35.5	46.6	51.6	$\Delta L L(I I)-2$		
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 補強脚を併用 | 10.3 | 10.7 | 20.1 | 27.1 | 38.2 | 49.2 | 52.4 | $\Delta \mathrm{LL}($ II $)-4$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

－重量（ボール）床衝撃音レベル低減量（dB）

中心周波数（Hz）	63	125	250	500	1 K	2 K	4 K

| 基準試験体 | 4.2 | 10.2 | 17.7 | 17.9 | 14.0 | 10.2 | 7.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 全周囲際根太使用 | -2.6 | -2.0 | 3.2 | 7.1 | 8.9 | 7.5 |
:---	:---	:---	:---	:---	:---	:---		1箇所幅木接触 5.7	10.2	17.5	17.0	12.9	9.8	5.9			
4								4箇所幅木接触	2.3	3.0	8.9	11.0	11.7	9.2	5.8		
:---	:---	:---	:---	:---	:---	:---	:---	:---		補強脚を併用	5.3	8.7	13.3	8.8	5.6	4.5	5.0
:---:	:---	:---	:---	:---	:---	:---	:---										

■遮音性能試験

中心周波数 (Hz)	63	125	250	500	1 K	2 K	4 K

床㣫撃音しベル（dB）	69.5	64.1	58.6	44.8	34.0	26.6	22.3
試料草工状能挸漼化							

床衝撃音しベル（dB）	2．1	66．1	55.4	37.7	25.1	19.1	16.1
床㣫撃音しベル	-2.6	-2.0	3.2	7.1	8.9	7.5	6.2

試験方法 ：JIS A 1440－1，－2

試験施設 ：200mm厚RCスラブの壁式構造実験室
試験機関 ：自社実験室
試験日：2009年3月14日
加振点数 ：対角5点
衝撃源：軽量床衝撃音はタッピングマシン
重量床衝撃音はボール（インパクトボール）

幅木が床面に接触した試験結果

－軽量床衝撃音レベル低減量（dB）

中心周波数 (Hz)	63	125	250	500	1 K	2 K	4 K	$\Delta \mathrm{LL}$ 等級

基準試験体	10.2	12.6	20.1	27.5	38.3	49.3	53.3	$\Delta L L(I I)-4$										
全										全周囲際根太使用	1.6	-0.2	6.2	15.5	29.1	42.0	50.8	$\Delta L L(I I)-1$
:---	:---	:---	:---	:---	:---	:---	:---	:---	1箇所幅木接触11．1 12.2 20．5 27.8 37．7 $49.152 .2 \Delta L L($ II $)-4$									

補強脚を併用	10.3	10.7	20.1	27.1	38.2	49.2	52.4	$\Delta L L(I I)-4$

－重量（ボール）床衝撃音レベル低減量（dB）

| 中心周波数 (Hz) | 63 | 125 | 250 | 500 | 1 K | 2 K | 4 K |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 基準試験体 | 4.2 | 10.2 | 17.7 | 17.9 | 14.0 | 10.2 | 7.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 全周囲際根太使用 | -2.6 | -2.0 | 3.2 | 7.1 | 8.9 | 7.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6.2 | | | | | | | | 箇所幅木接触 | 5.7 | 10.2 | 17.5 | 17.0 | 12.9 | 9.8 | 5.9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | | | | | | | | | 4箇所幅木接触 | 2.3 | 3.0 | 8.9 | 11.0 | 11.7 | 9.2 | 5.8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 補強脚を併用 | 5.3 | 8.7 | 13.3 | 8.8 | 5.6 | 4.5 | 5.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

■遮音性能試験

—幅木（1）のみ接触した測定結果（グラフ こ — 実線）

| 中心周波数（Hz） | 63 | 125 | 250 | 500 | 1 K | 2 K | 4 K |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | $\begin{array}{c}\text { 表面状熊䐲準化 } \\ \text { 㮔撃音しベル（dB）}\end{array}$ | 62.9 | 63.2 | 65.2 | 63.8 | 65.3 | 65.7 | 63.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

床㣫撃音しベル（dB）	51.8	51.0	44.7	36.0	27.6	16.6	11.7
床㣫䡶音しベル							
低減量（dB）	11.1	12.2	20.5	27.8	37.7	49.1	52.2

中心周波数（ Hz ）	63	125	250	500	1K	2 K	4K
素面状態規準化床衝撃音しベル（ dB ）	69.5	64.1	58.6	44.8	34.0	26.6	22.3
試料施工状態規準化床衝撃音しベル（dB）	63.8	53.9	41.1	27.8	21.1	16.8	16.4
床衝撃音しベル低減量（dB）	5.7	10.2	17.5	17.0	12.9	9.8	5.9

■幅木（1）～（4）を接触した測定結果（グラフごこ 波線）

| 中心周波数（Hz） | 63 | 125 | 250 | 500 | 1 K | 2 K | 4 K |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | $\begin{array}{l}\text { 素面状態規準化 } \\ \text { 床衝撃音しベル（dB）}\end{array}$ | 62.9 | 63.2 | 65.2 | 63.8 | 65.3 | 65.7 | 63.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

補強脚を併用した試験結果

■試験体図

－軽量床衝撃音しベル低減量（dB）

| 中心周波数 (Hz) | 63 | 125 | 250 | 500 | 1 K | 2 K | 4 K | $\Delta \mathrm{LL}$ 等級 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |基準試験体 $10.212 .620 .127 .538 .349 .353 .3 \Delta \operatorname{LL}($ II $)-4$

－重量（ボール）床㣫撃音しベル低減量（dB）

| 中心周波数 (Hz) | 63 | 125 | 250 | 500 | 1 K | 2 K | 4 K |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 基準試験体 | 4.2 | 10.2 | 17.7 | 17.9 | 14.0 | 10.2 | 7.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 全周囲際根太使用 | -2.6 | -2.0 | 3.2 | 7.1 | 8.9 | 7.5 | 6.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 4箇所幅木接触 2.3 ． 3.0 ． 8.9 11．0 $11.7 \mid 9.2$ 5．8
－遮音性能試験

床衝撃音レベル低減量

- 試験方法：JIS A 1440－1，－2 試験施設：200mm厚RCスラブの壁式構造実験室
- 試験場所：自社実験室
- 試験体：
：栗フローリング 12 mm 仕上
加振点数：対角5点

標準軽量衝撃音［タッピングマシン］			$\Delta L L$ 等級 （ $\Delta L L(\mathbb{I I})$ ）	中心周波数（Hz）							$\begin{gathered} \mathrm{AP} \\ (\mathrm{dBA}) \end{gathered}$	
			63	125	250	500	1000	2000	4000			
（1）	SJ－S	硬度450 防振ゴム＋床パネル23mm ＋捨て張り（スラボー18mm）		4	11．2	14.1	21.6	29． 9	42． 9	54．${ }^{*}$	55．1＊	32.6
（2）	（2） SJ －W	硬度45 防振ゴム＋床パネル 23 mm ＋捨て張し（合板 12 mm ）	4	9.7	12． 6	20． 3	29． 3	42． 3	54． ＊*	55． 0 ＊	31.4	
（3）	SJ－W2P	硬度 45° 防振ブム十床パネル 23 mm ＋PB（12．5mm×2枚）＋捨て張 （（合板 12 mm ）	5	11.7	16． 2	24． 2	31.5	43． 9	55． 1^{*}	55．3＊	34.6	
（4）	（4）SJL	低床用硬度 45° 防振ゴム十床パネル 23 mm ＋捨て張り（合板12mm）	3	10.4	12． 1	18． 4	29.1	43． 2	53． 3^{*}	52．9＊	31.2	
（5）	（5）SJY	音性能優先ソフト防振ゴム + オリジナル温水式底暖パネル	4	7． 3	13． 8	23． 8	30． 4	39． 7	50． 3	51．9＊	33.3	
6	JSOS	音性能優先ソフト防振ゴム＋杖バネル 23 mm	4	9． 9	13． 6	19．9	27． 0	35． 9	51.2	53．${ }^{\text {＊}}$	31.2	
（7）	7） JSOH	音性能優先ハート防振ゴム＋床パネル 3 3mm	3	7． 1	11． 0	14． 9	21． 2	35． 8	51． 6	54． 2 ＊	26． 8	
8	（3）JST	たわみ性能優先防振ごム＋木パネル23mm	2	1． 2	4． 1	8． 8	17． 5	29． 6	40．9	47． 6 ＊	21． 2	
（	（9）JSH	補強用ゴム＋床パネル23mm	1	－0．9	－0． 6	5． 5	13.4	26． 7	37． 7	43.1	15． 2	
標準重量衝撃音（1）［バングマシン］			$\begin{aligned} & \Delta \mathrm{LH} \text { 等級 } \\ & (\Delta L \mathrm{LH}(\mathrm{II})) \end{aligned}$	中心周波数（Hz）							$\begin{gathered} \mathrm{AP} \\ (\mathrm{dBA}) \\ \hline \end{gathered}$	
			63	125	250	500	1000	2000	4000			
（1）	1）$S J-S$	硬度45 ＋捨て張り（スラボー18mm）		4	7． 9	1． 4	3． 9	5． 6	3． 7	5． 8	9．6＊	4.7
（2）	SJ－W	硬度450 防振ごム＋床パネル 23 mm ＋捨て張り（合板12mm）	4	5． 2	0． 8	3． 4	5． 7	5． 5	7． 6	10．3＊	2． 6	
（3）	（3）SJ－W2P	硬度450 防振ブム＋床パネル 23 mm + PB（ $12.5 \mathrm{~mm} \times 2$ 枚） ＋捨て張 （ （合板 12 mm ）	4	8． 5	3． 3	6． 3	8． 3	7． 6	10．2	10．7＊	5.9	
（4）	（4）SJL	低生用硬度 45° 防振ゴム十本パネル 23 mm ＋倹て强价合板12m）	3	0． 3	1． 6	6． 0	10． 2	15．2	17．8＊	11．3＊	1． 7	
（5）	（5）SJY	音性能優先ソフト防振ゴム + オリジナル温水式床暖パネル	3	4． 1	5． 1	12． 5	14． 0	12． 1	14.3	9． 7	6． 3	
6	（3）JSOS	音性能優先ソノト防振ゴム＋床パネル 23 mm	3	2． 1	0． 5	5． 4	11.5	16． 2	19．6＊	12．9＊	2． 4	
（7）	7） JSOH	音性能優先ハート防振ゴム＋床パネル 23 mm	1	－6． 5	－2． 9	3． 4	6.1	12． 9	15．9＊	12．6＊	－4． 4	
8	（3）JST	たわみ性能唖先防振でム＋床パネ儿 23 mm	2	－4． 9	－6． 5	－3． 4	2． 8	6． 9	7.6	7． 5	－4． 5	
（9）	JSH	補強用ごム＋床パネル 23 mm	2	－1．2	－9． 3	0． 4	3． 8	9． 4	12． 7	19．7＊	－3． 5	
標準重量衝撃音（2）［インパクトボール］			$\begin{aligned} & \Delta \mathrm{LH} \text { 等級 } \\ & (\Delta \operatorname{LLH}(\mathbb{I I})) \end{aligned}$	中心周波数（ Hz ）							$\begin{gathered} \mathrm{AP} \\ (\mathrm{dBA}) \end{gathered}$	
			63	125	250	500	1000	2000	4000			
（1）	1） $\mathrm{SJ} \mathrm{J}-\mathrm{S}$	硬度450 防振ゴム十床パネル23mm ＋捨て張り（スラボー18mm）		－	4． 6	10． 8	16． 1	20． 8	14． 3	8． 6	5． 6 ＊	10． 1
（2）	（2） $\mathrm{SJ}-\mathrm{W}$	硬度450 防振ゴム十床パネル 23 mm 	－	1． 1	10.1	15． 4	19．7	14． 3	8． 4	6．${ }^{*}$	7． 9	
（3）	（3）SJ－W2P	硬度 45° 防振ゴム＋床パネル 23 mm 	－	5． 6	12． 1	18． 6	21.9	16． 8	8． 7	5．${ }^{*}$	11.4	
（4）	（4）SJL	低床用硬度 45° 防振ゴム十本バネル 23 mm ＋倹て張り合板12m）	－	2． 1	7． 1	13.7	18． 8	19．7＊	15．0＊	8． 7^{*}	9.5	
（5）	（5）SJY		－	1． 7	5． 9	17． 8	19．8	17.6	16． 6	11.4	10． 1	
©	（3）JSOS	音性能優先ソノト防振ずム＋床パネル 23 mm	－	－1．8	7． 3	18.0	23.3	22．6＊	16．5＊	9． 4^{*}	8． 4	
（7）	7） JSOH	音性能優先ハート防振ゴム＋床パネル 3 3mm	－	－2． 0	6． 3	9． 8	11.0	14．8	13． 0 ＊	7． 2 ＊	5． 6	
8	（3）JST	たわみ性能優先防振ごム＋木パネル 23 mm	－	－2． 2	0． 0	4． 1	5． 1	1.9	0． 7	0． 5	3． 2	
（9）	（9）JSH	補強用ゴム＋床パネル 23 mm	－	－2． 8	－5．9	1． 6	4． 3	2． 6	1． 5	0.4	－1．9	

たわみ強度試験

980N荷重に対する変位量			測定値（mm）				
			A 点	B 点	C 点	D 点	平均
（1）	SJ－S	＋掊て張り（スちボー18m）	3． 1	3． 2	2． 5	2． 4	2． 8
（2）	SJ－W	硬度450 防振ずム＋床パネル 23 mm ＋唅て張り（合板 12 mm ）	3． 3	3． 0	3． 3	3． 1	3． 2
（3）	SJ－W2P	硬度 45° 防振ゴム＋床パネル 23 mm $+\mathrm{PB}(12.5 \mathrm{~mm} \times 2$ 枚）＋捨て張り（合板 12 mm ）	2． 8	2． 3	2． 4	2． 8	2． 6
（4）	SJL	低床用硬度 45° 防振ごム＋床パネル 23 mm ＋捨て張り（合板12 1 mm ）	1.1	1.5	1． 8	2． 5	1.7
（5）	SJY		1． 7	1． 7	1． 8	2． 3	1． 9
©	JSOS	音性能優先ソフト防振ゴム＋木木パネル 23 mm	2． 2	2． 0	3． 0	3． 2	2． 6
（7）	JSOH	音性能優先ハート防振ゴム＋本パネ儿 23 mm	2． 0	1． 9	1． 8	1． 5	1． 8
8	JST	たわみか性能作先防振でム＋床パネ儿23nm	0． 9	0． 9	1． 7	1． 3	1． 2
（9）	JSH	補強用ゴム＋床パネル 23 mm	1． 0	0． 4	0． 3	0.7	0． 6

－試験方法 ：$\phi 80 \mathrm{~mm}$ の加圧板に $980 \mathrm{~N}(100 \mathrm{kgf})$ の荷重 をかけ，5分間保持した後の変位を測定

- 試験施設： 200 mm 厚RCスラブの壁式構造実験室
- 試験場所：自社実験室
- 試験体縦 2770 c 社験至栗フローリング 12 mm 仕上げ，床高 150 mm
- 測定位置
- A 床パネル目地部の支持脚間
－B 同一床パネルの支持脚間
- C 支持脚の真上
- D 床端部から 10 cm の位置で，変位が大き いと見达まれる点

－支持脚

ゴム形状分類	Oタイプ支持脚	Tタイプ支持脚	Hタイプ支持脚
$コ ゙ ム$ 性能分類	O45：硬度 45° 高性能仕様 OS ：音性能優先ソフト防振ゴム仕様 OH ：音性能優先ハード防振ゴム仕様	T45：硬度 45° 高性能仕様 T75：たわみ強度優先ハード防振ゴム仕様	H ：補強用
品 番	045－90～490 OS－90～490 OH－90～490	T45－90～490 T75－90～490	H－80～470
$\begin{aligned} & \text { 形 } \\ & \text { 状 } \\ & \dot{寸} \\ & \text { 法 } \end{aligned}$			

Oタイプ支持脚 O45：硬度 45° 高性能仕様 OS：音性能優先ソフト防振ゴム仕様 OH ：音性能優先ハード防振ゴム仕様

Tタイプ支持脚 T45：硬度 45° 高性能仕様 T75：たわみ強度優先ハード防振ゴム仕様

Hタイプ支持脚 H ：補強用

1111

Oタイプ支持脚 O45：硬度 45° 高性能仕様 OS：音性能優先リフト防振ゴム仕様 OH：音性能優先ハート防振ゴム仕様

Tタイプ支持脚 T45：硬度45 ${ }^{\circ}$ 高性能仕様 T75：たわみ強度優先ハード防振ゴム仕様

H タイプ支持脚 H ：補強用

床先行工法

床先行工法割付例

床先行工法納まり例

壁先行工法

壁先行工法割付例

壁先行エ法納まり例

事前準備，確認事項

- フローリングの向きを確認し，床パネルはフローリングと直交する向きに施工します。
- 現場のレベル，設備関係の配管位置を確認します。

（2）長尺受け材の組み立て

長尺受け材の裏面から支持脚を手で仮挿入し，表面から電動 ドライバーで面位置程度まで引き上げます。

（4）床パネルの設置

次の長尺受け材を設置し，1枚目の床パネルを長尺受け材の調整用ボルト穴を塞がない位置に合わせ設置します。

（6）横1列の床パネルの設置

長尺受け材，床パネルの設置，仮締めを繰り返し，横1列を敷 き込みます。横方向の目すかしは必要ありません。最後尾の床パネルサイズが 455 mm より小さい場合には，手前の パネルを含めたサイズ調整を行い，455mm以上にします。
（3）長尺受け材の設置

壁と接する側にスペーサーを横側面に2個，縦側面に1個貼り付け，設置します。（壁側の剥離紙は剥がさない。） この時，スタート側の縦一列の長尺受け材は，最初の支持脚か ら 40 mm 残して切断しておきます。

床パネルの仮締め

床パネルと長尺受け材を片側3本程度のビスで仮締めします。 （ビスL $=38 \mathrm{~mm}$ 以上）
！床パネルは，不陸を取った面が表面です。

床パネルの本締め

床パネルを303mmピッチで本締めします。（ビスL＝38mm以上） この他に，長尺受け材のジョイント部分上は，その両側をビス止 めします。

次の列の床パネル設置

次列の最初の床パネルは 455 mm 幅以上のサイズに切断したもの を用います。この時，前列のジョイント部分と重ならないように注意し，幅を調整して下さい。また，前列との目すかしは12～15 mm 程度とします。 8），（5）～（7）を繰り返し，全面に敷設します。

横1列のレベル調整

壁側の横1列をレベルセンサーが受光位置となるように，支持脚の調整ボルトをドライバーで順次調整します。
調整時は対象の床パネルには乗らないように作業をして下さ

最終確認

実際に床の上を歩行し，ふわふわと浮いているところがないか点検します。あった場合には支持脚を再度調整します。
（9）基準レベルとレーザーレベルの調整

全面敷設後，1枚目の床パネルの角を基準となるレベルに調整した後，レーザーレベルを設置します。この時に，レベルセン サーの中央位置に出来るだけ近くなるようにレーザーレベルとレ ベルセンサーの高さを合わせておきます。

次横1列のレベル調整

次列の横1列をレベルセンサーが受光位置となるように，支持脚の調整ボルトをドライバーで順次調整します。
以降，同様に作業を繰り返し，全面のレベルを調整します。

接着剤の注入

支持脚のボルトと長尺受け材のナットの嵌合部に適量の接着剤 を注入し，固定します。

※ 製品は水に濡らさないようにして下さい。

※ 詳細な施工手順と施工上の注意点は，別冊「施工要領書」に従い作業して下さい。
※製品端部が幅木や壁に接触することで製品本来の性能は失われます。適切な空間を確保するよう，十分注意して施工して下さい。
※ 壁際や敷居等に接する部分には硬度 75° の防振ゴムを使用する必要があります。品番と捺印を確認し，正しく配置して下さい。
※ フローリング仕上げの場合には製品に直仕上げが出来ますが，ビニール系素材やカーペットでの仕上げの場合には更に3mm程度の捨て張り が必要です。その他の仕上げについてはご相談下さい。

高性能遮音ニ重床 ジャストフロアー SJL 施エ手順

（1）事前準備，確認事項

- フローリングの向きを確認し，捨て張りはフローリングと直交する向きに施工します。
- 現場のレベル，設備関係の配管位置を確認します。

2支持脚の取り付け
ベースパネルNの裏面から支持脚を手で仮挿入し，表面から電動ドライバーで面位置程度まで引き上げます。
短尺ジョイント材を 100 mm に切断し，長さの半分が重なるよう にビス止めします。

（3）スペーサーの取り付け
ベースパネルNの裏面から支持脚を手で仮挿入し，表面から電動ドライバーで面位置程度まで引き上げます。
短尺ジョイント材を 100 mm に切断し，長さの半分が重なるよう にビス止めします。

4）長尺ジョイント材の取り付け
パネル手前側に長尺ジョイント材をビス止めします。
この時，ジョイント材とパネルの端部が重ならないようにするため， 200mmの短尺ジョイント材を最初の位置（壁際）に使用します。

5 レベル調整

（2）と同様に準備し，壁側にスペ一サーを取り付けたベースパネ ルNをジョイント材に乗せ，ビス止めします。
同様の作業を繰り返し，横一列 のパネルを敷設後，全ての支持脚のレベル調整を行います。

6 2列目からの設置

（2）と同様に準備し，壁側にスペ一サ一を取り付けたベースパネ ルNをジョイント材に乗せ，ビス止めします。
同様の作業を繰り返し，横一列 のパネルを敷設後，全ての支持脚のレベル調整を行います。

7 全面に敷き込み

設置，ビス止め，レベル調整を繰り返し，全面に敷き込みます。 ベースパネルの壁に接する部分は，端部から支持脚までの距離が 80 mm かつ支持脚間が553 mm以内となるよう，適宜調整し て下さい。（支持脚の追加，パ ネル加工等）

（8）歩行確認•接着剤の注入
実際に床の上を歩行し，浮いて いるところがないか点検し，あっ た場合には支持脚を再度調整 します。
確認後，支持脚のボルトとナット との嵌合部に適量の専用接着剤を注入し，固定します。

9 捨て張り設置•最終確認

ジョイント部がベースパネルのジ ョイント部と100mm以上ずれるよ うにサイズ調整し，支持脚上と なる位置に穴を開けた捨て張りを， ベースパネルと直交する向きに設置しビス止めします。全面に敷設後，最終確認をします。
※ 製品は水に濡らさないようにして下さい。
※ 詳細な施工手順と施工上の注意点は，別冊「ジャストフロア—低床対応タイプ 施工要領書に従い作業して下さい。
※ 製品端部が幅木や壁に接触することで製品本来の性能は失われます。適切な空間を確保するよう，十分注意して施工して下さい。
※ 壁際や敷居等に接する部分には硬度 75° の防振ゴムを使用する必要があります。品番と捺印を確認し，正しく配置して下さい。
※ フローリング仕上げの場合には製品に直仕上げが出来ますが，ビニール系素材やカーペットでの仕上げの場合には更に3mm程度の捨て張りが必要です。その他の仕上げについてはご相談下さい。

```
ベースパネル 強化高圧木毛セメント板 スラボー
    [ベースパネル N(ノーマルタイプ)] \(453 \mathrm{~mm} \times 1820 \mathrm{~mm}\)（ 23 mm 厚）支持脚用ナット \(\times 8\) 力所
［ベースパネル S（ショートタイプ）］ \(453 \mathrm{~mm} \times 910 \mathrm{~mm}\)（ 23 mm 厚）支持脚用ナット \(\times 6\) 力所
```


ジョイント材 強化高圧木毛セメント板 スラボー

```
［長尺ジョイント材］
\(88 \mathrm{~mm} \times 1820 \mathrm{~mm}(23 \mathrm{~mm}\) 厚）
［短尺ジョイント材］
\(88 \mathrm{~mm} \times 200 \mathrm{~mm}(23 \mathrm{~mm}\) 厚）
```

捨て張り
合 板（ 12 mm 厚）市販品（ F なふ） ※各現場にて準備を願います。

低床用Tタイプ支持脚 T45：硬度 45° 高性能仕様

品 番	T45－75	T45－80	T45－90	T45－100	T45－110	
ボルト（mm）	35	40	50	60	70	
ボルト＋ゴム（mm）	49	54	64	74	84	
適応中心高（mm）	71	73	81	91	101	
床 140						
高 130						
適 120						捂て張り
唐 110					117	
$\begin{array}{rr} \text { 範 } & 100 \\ \text { 布 } & 90 \end{array}$				107	86	
\＃ 80		87	97	76		
上限 70	82		66			コンクリートステア
下限 $\begin{aligned} & 60 \\ & 50\end{aligned}$	60	60				

[^1] JF（ジャストフロアーフィードバックシステム）の概要。

乾式遮音二重床の最終目標

乾式遮音二重床の音に関する最終目標は，消費者が満足できる実建物の遮音性能実測値を消費者に提示することです。 これを可能にするための第一歩がJFシステムです。

お客様に実際の建物で遮音性能を体感して頂きます。

ご採用の検討材料として，床衝撃音の測定結果だけでなく，例えば，従来採用構造と検討中 の構造を施工し，遮音性能や音質の違いを実際に聞いて比較していただくことを行います。

エンドユーザーには，入居後の生活音がどのよ うに下階に聞こえるか，また，ジャストフロアーの生活音に対する優れた遮音性能を耳で聞いて体感していただけます。

JFシステムは，これらの結果，反応を実験室に持ち帰って研究•開発を行い，新たな製品のご提案に役立てます。

最近の消費者クレームと，JFシステムの役割

最近の音に関するクレームは，歩行や走り回り，家具の引きずり等によるものが主で，飛び跳ねや飛び降りといった特 に衝撃力の大きな行為に起因するものは少ないという意見があります。（『文献調査等からみた床衝撃音に関する
一連の考察』日本建築学会大会学術梗概集（近畿）2005年9月）

	建物の責任（構造）	建物と住人の責任（しつけ）	住人の責任（住人の分別）
発生源	•幼児の歩き回り，飛び降り －大人の踵歩き	•子供の走り回り，飛び降り	•大人の走り回り，飛び降り
クレーム数	多い		少ない

この部分の性能を高めることで消費者に満足してもらえる床を作ることができると考えます。
そのために，JFシステムの現場での実測定は，軽量衝撃源のタッピングマシンと，重量衝撃源には幼児の歩き回り，飛び降り，大人の踵歩きにより近いボールを使用して行います。
※重量衝撃源にタイヤを使用すると，仕上がった状態の床では傷を付けてしまうことがありますが，ボールはその心配もありせん。

ジャストフロアーは，集合住宅に住むしつけ前の幼児が伸び伸びと育ち，分別ある大人が普通に暮らせる遮音性能を持つ床を目指します。

※商品の外観•仕様は改良のため予告なく変更することがあります。予めご了承下さい。 ※カタログは印刷のため，掲載商品の色が実物とは若干異なる場合があります。
（115）日本工業規格 JIS A 5404 認証取得工場認証番号 長野工場＝GB0308049／山口工場＝GB0608026国土交通省準不燃材認定 QM9020／QM9021／QM9022
竹村工業株式会社
〒399－3301 長野県下伊那郡松川町上片桐4604
TEL 0265－36－6111 FAX 0265－36－6555
長野工場－〒399－3304 長野県下伊那郡松川町大島408－9
TEL 0265－36－2900 FAX 0265－36－2929
山口 工 場 〒 $759-1421$ 山口県山口市阿東地福上2260－1 TEL 083－952－5011 FAX 083－952－5008

0 545

[^0]: 試験方法：JIS A 1440－1，－2
 試験施設：200mm厚RCスラブの壁式構造実験室
 試験機関：自社実験室
 試験日：2009年3月14日
 加振点数：間仕切り付近となる中心部を除く，対角4点
 衝撃源 ：軽量床衝撃音はタッピングマシン
 重量床衝撃音はボール（インパクトボール）

[^1]: ※床高適用範囲は，捨て張りまで含めた寸法です。
 ※掲載寸法以上の床高にも対応しています。別途，お問い合わせ下さい。

